Publications by authors named "Shunsuke Adachi"

Soluble oxalate accumulates in rice leaves, and it causes mineral deficiency and urinary syndrome in livestock that consume the leaves. In our previous study, we found that the oxalate content was higher in the leaves of Koshihikari ( type cultivar) than in those of Takanari ( type cultivar). This difference was seen even when the two cultivars were grown under a high CO concentration, which inhibits oxalate synthesis via photorespiration, suggesting that the difference resulted from genetic factors rather than environmental factors.

View Article and Find Full Text PDF

Enhancing leaf photosynthetic capacity is essential for improving the yield of rice (Oryza sativa L.). Although the exploitation of natural genetic resources is considered a promising approach to enhance photosynthetic capacity, genomic factors related to the genetic diversity of leaf photosynthetic capacity have yet to be fully elucidated due to the limitation of measurement efficiency.

View Article and Find Full Text PDF
Article Synopsis
  • The new calibration system for cosmic microwave background (CMB) polarization uses a sparse wire grid to reflect polarized light, improving accuracy in measurements.
  • A remote-controlled feature allows for regular calibration, which was previously not possible, utilizing electric actuators to adjust the wire grid's position.
  • The system includes a motor for rotation and sensors to ensure precise monitoring, resulting in minimal systematic errors and planned installation in telescopes at Simons Observatory.
View Article and Find Full Text PDF

Deep-water (DW) management in rice fields is a promising technique for efficient control of paddy weeds with reduced herbicide use. Maintaining a water depth of 10-20 cm for several weeks can largely suppress the weed growth, though it also inhibits rice growth because the DW management is usually initiated immediately after transplanting. Improving the DW resistance of rice during the initial growth stage is essential to avoid suppressing growth.

View Article and Find Full Text PDF

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice.

View Article and Find Full Text PDF

Increasing the lodging resistance of rice through genetic improvement has been an important target in breeding. To further enhance the lodging resistance of high-yielding rice varieties amidst climate change, it is necessary to not only shorten culms but strengthen them as well. A landrace rice variety, Omachi, which was established more than 100 years ago, has the largest culm diameter and bending moment at breaking in the basal internodes among 135 temperate japonica accessions.

View Article and Find Full Text PDF

Introduction: Plant cell walls play an important role in providing physical strength and defence against abiotic stress. Rice brittle culm (bc) mutants are a strength-decreased mutant because of abnormal cell walls, and it has been reported that the causative genes of bc mutants affect cell wall composition. However, the metabolic alterations in each organ of bc mutants have remained unknown.

View Article and Find Full Text PDF

Photosynthetic induction, which is the response of the CO assimilation rate to a stepwise increase in light intensity, potentially affects plant carbon gain and crop productivity in field environments. Although natural variations in photosynthetic induction are determined by CO supply and its fixation, detailed factors, especially CO supply, are unclear. This study investigated photosynthesis at steady and non-steady states in three rice (Oryza sativa L.

View Article and Find Full Text PDF

Flaveria is a leading model for C4 plant evolution due to the presence of a dozen C3-C4 intermediate species, many of which are associated with a phylogenetic complex centered around Flaveria linearis. To investigate C4 evolution in Flaveria, we updated the Flaveria phylogeny and evaluated gas exchange, starch δ13C, and activity of C4 cycle enzymes in 19 Flaveria species and 28 populations within the F. linearis complex.

View Article and Find Full Text PDF

Severe lodging has recurrently occurred at strong typhoon's hitting in recent climate change. The identification of quantitative trait loci and their responsible genes associated with a strong culm and their pyramiding are important for developing high-yielding varieties with a superior lodging resistance. To evaluate the effects of four strong-culm genes on lodging resistance, the temperate japonica near isogenic line (NIL) with the introgressed SCM1 or SCM2 locus of the indica variety, Habataki and the other NIL with the introgeressed SCM3 or SCM4 locus of the tropical japonica variety, Chugoku 117 were developed.

View Article and Find Full Text PDF

Under field environments, fluctuating light conditions induce dynamic photosynthesis, which affects carbon gain by crop plants. Elucidating the natural genetic variations among untapped germplasm resources and their underlying mechanisms can provide an effective strategy to improve dynamic photosynthesis and, ultimately, improve crop yields through molecular breeding approaches. In this review, we first overview two processes affecting dynamic photosynthesis, namely (i) biochemical processes associated with CO2 fixation and photoprotection and (ii) gas diffusion processes from the atmosphere to the chloroplast stroma.

View Article and Find Full Text PDF

Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a severe form of stiff-person spectrum disorder. We report a 59-year-old man who presented with progressive encephalomyelitis causing diplopia, bulbar palsy, severe dysautonomia, followed by stiffness and myoclonic cluster. Laboratory tests showed mild pleocytosis, with markedly elevated plasma levels of norepinephrine, epinephrine, and arginine vasopressin.

View Article and Find Full Text PDF

It is generally believed that rice landraces with long culms are susceptible to lodging, and have not been utilized for breeding to improve lodging resistance. However, little is known about the structural culm strength of landraces and their beneficial genetic loci. Therefore, in this study, genome-wide association studies (GWAS) were performed using a rice population panel including Japanese rice landraces to identify beneficial loci associated with strong culms.

View Article and Find Full Text PDF

How genetic variations affect gene expression dynamics of field-grown plants remains unclear. Expression quantitative trait loci (eQTL) analysis is frequently used to find genomic regions underlying gene expression polymorphisms. This approach requires transcriptome data for the complete set of the QTL mapping population under the given conditions.

View Article and Find Full Text PDF

Photosynthesis occurs mainly in plant leaves and is a fundamental process in the global carbon cycle and in crop production. The exploitation of natural genetic variation in leaf photosynthetic capacity is a promising strategy to meet the increasing demand for crops. The present study reports the newly developed photosynthesis measurement system 'MIC-100,' with a higher throughput for measuring instantaneous photosynthetic rate in the field.

View Article and Find Full Text PDF

Leaf photosynthetic rate changes across the growing season as crop plants age. Most studies of leaf photosynthesis focus on a specific growth stage, leaving the question of which pattern of photosynthetic dynamics maximizes crop productivity unanswered. Here we obtained high-frequency data of canopy leaf CO assimilation rate (A) of two elite rice (Oryza sativa) cultivars and 76 inbred lines across the whole growing season.

View Article and Find Full Text PDF

Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging.

View Article and Find Full Text PDF

Understanding the limiting factors of grain filling is essential for the further improvement of grain yields in rice (Oryza sativa). The relatively slow grain growth of the high-yielding cultivar 'Momiroman' is not improved by increasing carbon supply, and hence low sink activity (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • C photosynthesis has evolved over 65 times, with approximately 24 distinct origins in the Caryophyllales order, notably within the Nyctaginaceae family, which includes around three genera with uncertain photosynthetic pathways.
  • A study of 159 Nyctaginaceae species revealed that two distinct clades exhibit C photosynthesis, confirming multiple evolutionary events for this trait within the family.
  • Underlying differences in biochemistry were identified, where one clade uses NADP-malic enzyme and the other NAD-malic enzyme, suggesting a complex interplay between evolutionary convergence and divergence in C photosynthesis traits.
View Article and Find Full Text PDF

Lodging can reduce grain yield and quality in cereal crops including rice (Oryza sativa L.). To achieve both high biomass production and lodging resistance, the breeding of new cultivars with strong culms is a promising strategy.

View Article and Find Full Text PDF

Plants in the field experience dynamic changes of sunlight rather than steady-state irradiation. Therefore, increasing the photosynthetic rate of an individual leaf under fluctuating light is essential for improving crop productivity. The high-yielding rice ( L.

View Article and Find Full Text PDF

Previously, theoretical calculations on the non-adiabatic dynamics of benzene from the S state have indicated that the S/S and S/S conical intersections (CIs) facilitate ballistic nuclear wavepacket motion from S to S (fast channel) and branching to S (slow channel). In this paper, we present time-resolved photoelectron spectra of benzene and its methyl-derivatives (toluene and o-xylene) measured with a vacuum-UV laser, which clearly reveal both the fast and slow channels. The extremely short propagation time of the wavepacket between the two CIs of benzene indicates that the two are in close proximity to each other, while methyl substitution extends the propagation time and decreases the branching ratio into the fast channel.

View Article and Find Full Text PDF

During late 1960s Green Revolution, researchers utilized semidwarf 1 (sd1) to improve the yield and lodging resistance in rice (Oryza sativa L.). However, sd1 has a negative effect to culm strength and biomass production.

View Article and Find Full Text PDF

Direct measurements of ecophysiological processes such as leaf photosynthesis are often hampered due to the excessive time required for gas-exchange measurements and the limited availability of multiple gas analyzers. Although recent advancements in commercially available instruments have improved the ability to take measurements more conveniently, the amount of time required for each plant sample to acclimate to chamber conditions has not been sufficiently reduced. Here we describe a system of multiple gas-exchange chambers coupled with a laser spectrometer that employs tunable diode laser absorption spectroscopy (TDLAS) to measure leaf photosynthesis, stomatal conductance, and mesophyll conductance.

View Article and Find Full Text PDF

Leaves within crop canopies experience variable light over the course of a day, which greatly affects photosynthesis and crop productivity. Little is known about the mechanisms of the photosynthetic response to fluctuating light and their genetic control. Here, we examined gas exchange, metabolite levels, and chlorophyll fluorescence during the photosynthetic induction response in an Oryza sativa indica cultivar with high yield (Takanari) and a japonica cultivar with lower yield (Koshihikari).

View Article and Find Full Text PDF