To clarify the anti-parkinsonian mechanisms of action of zonisamide (ZNS), we determined the effects of ZNS on tripartite synaptic transmission associated with kynurenine (KYN) pathway (KP) in cultured astrocytes, and transmission in both direct and indirect pathways of basal ganglia using microdialysis. Interactions between cytokines [interferon-γ (IFNγ) and tumor-necrosis factor-α (TNFα)] and ZNS on astroglial releases of KP metabolites, KYN, kynurenic-acid (KYNA), xanthurenic-acid (XTRA), cinnabarinic-acid (CNBA) and quinolinic-acid (QUNA), were determined by extreme liquid-chromatography with mass-spectrometry. Interaction among metabotropic glutamate-receptor (mGluR), KP metabolites and ZNS on striato-nigral, striato-pallidal GABAergic and subthalamo-nigral glutamatergic transmission was examined by microdialysis with extreme liquid-chromatography fluorescence resonance-energy transfer detection.
View Article and Find Full Text PDFRationale: Blockade of α2 adrenoceptors and histamine H1 receptors plays important roles in the antidepressant and hypnotic effects of mirtazapine.
Objectives: However, it remains unclear how mirtazapine's actions at these receptors interact to affect serotonergic transmission in the dorsal (DRN) and median (MRN) raphe nuclei.
Method: Using dual-probe microdialysis, we determined the roles of α2 and H1 receptors in the effects of mirtazapine on serotonergic transmission in the DRN and MRN and their respective projection regions, the frontal (FC) and entorhinal (EC) cortices.
Corticotropin-releasing factor (CRF) and serotonin are important transmitters of the pathophysiology of mood disorder. To clarify the mechanisms of action of lamotrigine (LTG) and carbamazepine (CBZ), we determined their effects on serotonin release associated with CRF in rat dorsal raphe nucleus (DRN) and median prefrontal cortex (mPFC) using dual-probe microdialysis. Neither perfusion with CRF1 nor CRF2 antagonists into DRN-affected serotonin release in DRN and mPFC.
View Article and Find Full Text PDFBackground And Purpose: Deficient transmission at the glutamate NMDA receptor is considered a key component of the pathophysiology of schizophrenia. However, the effects of antipsychotic drugs on the release of the endogenous NMDA receptor partial agonist, D-serine, remain to be clarified.
Experimental Approach: We determined the interaction between antipsychotic drugs (clozapine and haloperidol) and transmission-modulating toxins (tetanus toxin, fluorocitrate, tetrodotoxin) on the release of L-glutamate and D-serine in the medial prefrontal cortex (mPFC) of freely moving rats, using microdialysis, and primary cultures of astrocytes using extreme high-pressure liquid chromatography.