Publications by authors named "Shunqiong Jiang"

Lithium-sulfur batteries (LSBs) are known to be potential next-generation energy storage devices. Recently, our group reported an LSB cathode made using sulfur spheres that has been spherically templated by MXene nanosheets decorated with CoSe nanoparticles, forming a "loose-templating" configuration. It was postulated that the minimal restacking of the outer nanoparticle-decorated MXene layer helps to enable facile ionic transport.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries have shown exceptional theoretical energy densities, making them a promising candidate for next-generation energy storage systems. However, their practical application is limited by several challenging issues, such as uncontrollable Li dendrite growth, sluggish electrochemical kinetics, and the shuttling effect of lithium polysulfides (LiPSs). To overcome these issues, we designed and synthesized hierarchical matrixes on carbon cloth (CC) by using metal-organic frameworks (MOFs).

View Article and Find Full Text PDF

Conjugated polymers have been widely adopted as active materials in hydrogel-based stretchable supercapacitors, but the relatively low conductivity and poor structural stability limit their applications. Herein, highly conductive graphene was incorporated as a substrate to anchor polyaniline (PANI) in a hydrogel-based stretchable electrode. Graphene not only provided an effective conducting network in the electrode, but also stabilized PANI during repeating charge-discharge processes due to strong π-π interaction between graphene and PANI.

View Article and Find Full Text PDF