Publications by authors named "Shunqiang Li"

Patient-derived xenografts (PDX) model human intra- and intertumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histologic imaging via hematoxylin and eosin (H&E) staining is routinely performed on PDX samples, which could be harnessed for computational analysis. Prior studies of large clinical H&E image repositories have shown that deep learning analysis can identify intercellular and morphologic signals correlated with disease phenotype and therapeutic response.

View Article and Find Full Text PDF

Cyclin-dependent kinases 4 and 6 (CDK4/6) play a pivotal role in cell cycle and cancer development. Targeting CDK4/6 has demonstrated promising effects against breast cancer. However, resistance to CDK4/6 inhibitors (CDK4/6i), such as palbociclib, remains a substantial challenge in clinical settings.

View Article and Find Full Text PDF

Unlabelled: The PI3K pathway regulates essential cellular functions and promotes chemotherapy resistance. Activation of PI3K pathway signaling is commonly observed in triple-negative breast cancer (TNBC). However previous studies that combined PI3K pathway inhibitors with taxane regimens have yielded inconsistent results.

View Article and Find Full Text PDF

Background: Conjugation of transferrin (Tf) to imaging or nanotherapeutic agents is a promising strategy to target breast cancer. Since the efficacy of these biomaterials often depends on the overexpression of the targeted receptor, we set out to survey expression of transferrin receptor (TfR) in primary and metastatic breast cancer samples, including metastases and relapse, and investigate its modulation in experimental models.

Methods: Gene expression was investigated by datamining in twelve publicly-available datasets.

View Article and Find Full Text PDF

Unlabelled: Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models.

View Article and Find Full Text PDF
Article Synopsis
  • Cyclin-dependent kinases 4 and 6 (CDK4/6) are crucial for cell cycle regulation and are targeted in breast cancer treatment; however, many patients develop resistance to these inhibitors like palbociclib.
  • Researchers discovered that the microphthalmia-associated transcription factor (MITF) is activated in resistant breast cancer cells through a chemical modification called O-GlcNAcylation, which enhances mitotic processes and resistance to treatment.
  • Clinical studies showed that MITF activation is present in tumors from patients who resist palbociclib, suggesting that targeting MITF or its O-GlcNAcylation could be a new strategy for overcoming resistance in breast cancer therapy.
View Article and Find Full Text PDF

Unlabelled: In metastatic breast cancer, HER2-activating mutations frequently co-occur with mutations in PIK3CA, TP53, or CDH1. Of these co-occurring mutations, HER2 and PIK3CA are the most commonly comutated gene pair, with approximately 40% of HER2-mutated breast cancers also having activating mutations in PIK3CA. To study the effects of co-occurring HER2 and PIK3CA mutations, we generated genetically engineered mice with the HER2V777L; PIK3CAH1047R transgenes (HP mice) and studied the resulting breast cancers both in vivo as well as ex vivo using cancer organoids.

View Article and Find Full Text PDF

Unlabelled: Transcriptionally active ESR1 fusions (ESR1-TAF) are a potent cause of breast cancer endocrine therapy (ET) resistance. ESR1-TAFs are not directly druggable because the C-terminal estrogen/anti-estrogen-binding domain is replaced with translocated in-frame partner gene sequences that confer constitutive transactivation. To discover alternative treatments, a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) was deployed to identify druggable kinases that are upregulated by diverse ESR1-TAFs.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer-related deaths. Lung cancer cells develop resistance to apoptosis by suppressing the secretion of the tumor suppressor Par-4 protein (also known as PAWR) and/or down-modulating the Par-4 receptor GRP78 on the cell surface (csGRP78). We sought to identify FDA-approved drugs that elevate csGRP78 on the surface of lung cancer cells and induce Par-4 secretion from the cancer cells and/or normal cells in order to inhibit cancer growth in an autocrine or paracrine manner.

View Article and Find Full Text PDF
Article Synopsis
  • * The National Cancer Institute has initiated a Co-Clinical Imaging Resource Program (CIRP) to enhance practices in quantitative imaging for these trials, highlighting the need for improved imaging methodologies.
  • * An overview of ten co-clinical trials supported by the CIRP showcases various types of cancer being studied, the rationale for chosen animal models, and the challenges faced, contributing valuable resources to further cancer research.
View Article and Find Full Text PDF

Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response.

View Article and Find Full Text PDF

Proline- and serine-rich 2 (PROSER2) is encoded by the 47th open reading frame on human chromosome 10. Bioinformatic analysis has shown PROSER2 was significantly correlated with prognostic outcome of osteosarcoma patients. Its role in the progression and metastasis of human osteosarcoma has not been elucidated until now.

View Article and Find Full Text PDF

Cancer-derived extracellular vesicles (EVs) promote tumorigenesis, premetastatic niche formation, and metastasis via their protein cargo. However, the proteins packaged by patient tumors into EVs cannot be determined in vivo because of the presence of EVs derived from other tissues. We therefore developed a cross-species proteomic method to quantify the human tumor-derived proteome of plasma EVs produced by patient-derived xenografts of four cancer types.

View Article and Find Full Text PDF

HSP90 inhibitors can target many oncoproteins simultaneously, but none have made it through clinical trials due to dose-limiting toxicity and induction of heat shock response, leading to clinical resistance. We identified diptoindonesin G (dip G) as an HSP90 modulator that can promote degradation of HSP90 clients by binding to the middle domain of HSP90 (K = 0.13 ± 0.

View Article and Find Full Text PDF

Unlabelled: Microscaled proteogenomics was deployed to probe the molecular basis for differential response to neoadjuvant carboplatin and docetaxel combination chemotherapy for triple-negative breast cancer (TNBC). Proteomic analyses of pretreatment patient biopsies uniquely revealed metabolic pathways, including oxidative phosphorylation, adipogenesis, and fatty acid metabolism, that were associated with resistance. Both proteomics and transcriptomics revealed that sensitivity was marked by elevation of DNA repair, E2F targets, G2-M checkpoint, interferon-gamma signaling, and immune-checkpoint components.

View Article and Find Full Text PDF
Article Synopsis
  • The PDX Network (PDXNet) portal centralizes resources funded by the National Cancer Institute to enhance collaboration and simplify access to important cancer research data.
  • It contains information on 334 new PDX models across 33 cancer types, with samples stored in the NCI's Patient-Derived Model Repository for public access.
  • The portal provides validated analysis workflows with extensive sequencing data, continually updates with new resources, and serves as a valuable tool for cancer researchers focusing on treatment studies and preclinical trials.
View Article and Find Full Text PDF

Hepatocyte growth factor (HGF), the ligand for the MET receptor tyrosine kinase, is a tumor-promoting factor that is abundant in the tumor microenvironment. Proteolytic activation of inactive pro-HGF by one or more of the serine endopeptidases matriptase, hepsin, and HGF activator is the rate-limiting step in HGF/MET signaling. Herein, we have rationally designed a novel class of side chain cyclized macrocyclic peptide inhibitors.

View Article and Find Full Text PDF

Genomic analysis has recently identified multiple gene translocations in estrogen receptor alpha-positive (ERα) metastatic breast cancer (MBC) that encode chimeric proteins whereby the ESR1 ligand binding domain (LBD) is replaced by C-terminal sequences from many different gene partners. Here we functionally screened 15 ESR1 fusions and identified 10 that promoted estradiol-independent cell growth, motility, invasion, epithelial-to-mesenchymal transition, and resistance to fulvestrant. RNA sequencing identified a gene expression pattern specific to functionally active ESR1 gene fusions that was subsequently reduced to a diagnostic 24-gene signature.

View Article and Find Full Text PDF

Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs.

View Article and Find Full Text PDF

Preclinical magnetic resonance imaging (MRI) is a critical component in a co-clinical research pipeline. Importantly, segmentation of tumors in MRI is a necessary step in tumor phenotyping and assessment of response to therapy. However, manual segmentation is time-intensive and suffers from inter- and intra- observer variability and lack of reproducibility.

View Article and Find Full Text PDF

Purpose: We sought to exploit the heterogeneity afforded by patient-derived tumor xenografts (PDX) to first, optimize and identify robust radiomic features to predict response to therapy in subtype-matched triple negative breast cancer (TNBC) PDX, and second, to implement PDX-optimized image features in a TNBC co-clinical study to predict response to therapy using machine learning (ML) algorithms.

Methods: TNBC patients and subtype-matched PDX were recruited into a co-clinical FDG-PET imaging trial to predict response to therapy. One hundred thirty-one imaging features were extracted from PDX and human-segmented tumors.

View Article and Find Full Text PDF

Resistance to endocrine treatment occurs in ~30% of ER breast cancer patients resulting in ~40,000 deaths/year in the USA. Preclinical studies strongly implicate activation of growth factor receptor, HER2 in endocrine treatment resistance. However, clinical trials of pan-HER inhibitors in ER/HER2 patients have disappointed, likely due to a lack of predictive biomarkers.

View Article and Find Full Text PDF