Am J Physiol Endocrinol Metab
May 2024
Larsucosterol, a potent endogenous epigenetic regulator, has been reported to play a significant role in lipid metabolism, inflammatory responses, and cell survival. The administration of larsucosterol has demonstrated a reduction in lipid accumulation within hepatocytes and the attenuation of inflammatory responses induced by lipopolysaccharide (LPS) and TNFα in macrophages, alleviating LPS- and acetaminophen (ATMP)-induced multiple organ injury, and decreasing mortalities in animal models. Results from and clinical trials have shown that larsucosterol has potential as a biomedicine for the treatment of acute and chronic liver diseases.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
February 2024
Cholestenoic acid (CA) has been reported as an important biomarker of many severe diseases, but its physiological and pathological roles remain unclear. This study aimed to investigate the potential role of CA in hepatic lipid homeostasis. Enzyme kinetic studies revealed that CA specifically activates DNA methyltransferases 1 (DNMT1) at low concentration with EC = 1.
View Article and Find Full Text PDFPlants (Basel)
February 2023
Infectious diseases caused by pathogenic bacteria severely threaten human health. Traditional Chinese herbs are potential sources of new or alternative medicine. In this study, we analyzed for the first time antibacterial substances in the methanol-phase extract from a traditional Chinese herb- Linn-which showed an inhibition rate of 58.
View Article and Find Full Text PDFAcetaminophen (APAP) overdose is one of the most frequent causes of acute liver failure (ALF). N-acetylcysteine (NAC) is currently being used as part of the standard care in the clinic but its usage has been limited in severe cases, in which liver transplantation becomes the only treatment option. Therefore, there still is a need for a specific and effective therapy for APAP induced ALF.
View Article and Find Full Text PDFAbstract: Vibrio cholerae can cause pandemic cholera in humans. The bacterium resides in aquatic environments worldwide. Continuous testing of V.
View Article and Find Full Text PDFThe oxysterol sulfate, 25-hydroxycholesterol 3-sulfate (25HC3S), has been shown to play an important role in lipid metabolism, inflammatory response, and cell survival. However, the mechanism(s) of its function in global regulation is unknown. The current study investigates the molecular mechanism by which 25HC3S functions as an endogenous epigenetic regulator.
View Article and Find Full Text PDFOxysterols have long been believed to be ligands of nuclear receptors such as liver × receptor (LXR), and they play an important role in lipid homeostasis and in the immune system, where they are involved in both transcriptional and posttranscriptional mechanisms. However, they are increasingly associated with a wide variety of other, sometimes surprising, cell functions. Oxysterols have also been implicated in several diseases such as metabolic syndrome.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
is a leading seafood-borne pathogen that can cause acute gastroenteritis and even death in humans. In aquatic ecosystems, phages constantly transform bacterial communities by horizontal gene transfer. Nevertheless, biological functions of prophage-related genes in remain to be fully unveiled.
View Article and Find Full Text PDFThis work investigates the relationship between high-glucose (HG) culture, CpG methylation of genes involved in cell signaling pathways, and the regulation of carbohydrate and lipid metabolism in hepatocytes. The results indicate that HG leads to an increase in nuclear 25-hydroxycholesterol (25HC), which specifically activates DNA methyltransferase-1 (DNMT1), and regulates gene expression involved in intracellular lipid metabolism. The results show significant increases in CpG levels in at least 2,225 genes involved in 57 signaling pathways.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor gamma (PPAR) has recently been identified as an attractive target for atherosclerosis intervention. Given potential relevance of 5-cholesten-3β, 25-diol, 3-sulphate (CHOS) and PPAR, an integrated docking method was used to study their interaction mechanisms, with the full considerations to distinct CHOS conformations and dynamic ensembles of PPAR ligand-binding domain (PPAR-LBD). The results revealed that this novel platform is satisfactory to the accurate determination of binding profiles, and the binding pattern of CHOS is rather similar as those of current PPAR full/partial agonists.
View Article and Find Full Text PDFThe cholesterol sulfotransferase SULT2B1b converts cholesterol to cholesterol sulfate (CS). We previously reported that SULT2B1b inhibits hepatic gluconeogenesis by antagonizing the gluconeogenic activity of hepatocyte nuclear factor 4α (HNF4α). In this study, we showed that the SULT2B1b gene is a transcriptional target of HNF4α, which led to our hypothesis that the induction of SULT2B1b by HNF4α represents a negative feedback to limit the gluconeogenic activity of HNF4α.
View Article and Find Full Text PDFBackground: Oxysterol sulfation plays a fundamental role in the regulation of many biological events. Its products, 25-hydroxycholesterol 3-sulfate (25HC3S) and 25-hydroxycholesterol 3, 25-disulfate (25HCDS), have been demonstrated to be potent regulators of lipid metabolism, inflammatory response, cell apoptosis, and cell survival. In the present study, we tested these products' potential to treat LPS-induced acute liver failure in a mouse model.
View Article and Find Full Text PDFIGF-binding protein-3 (IGFBP-3) is a liver-derived, anti-inflammatory molecule that is decreased in obesity, a key risk factor for nonalcoholic fatty liver disease (NAFLD). It was not known whether IGFBP-3 levels were altered in NAFLD, whether such alterations could be the result of lipotoxicity, and whether altered IGFBP-3 could affect pathways that are involved in hepatic and systemic inflammation. Serum IGFBP-3 was decreased in patients with NAFLD, whereas liver and circulating IL-8 levels were increased.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2015
The status of the GP130-STAT3 signaling pathway in humans with nonalcoholic fatty liver disease (NAFLD) and its relevance to disease pathogenesis are unknown. The expression of the gp130-STAT3 axis and gp130 cytokine receptors were studied in subjects with varying phenotypes of NAFLD including nonalcoholic steatohepatitis (NASH) and compared with lean and weight-matched controls without NAFLD. Gp130 and its downstream signaling element (Tyk2 and STAT3) expression were inhibited in obese controls whereas they were increased in NAFLD.
View Article and Find Full Text PDFOxysterol sulfation plays an important role in regulation of lipid metabolism and inflammatory responses. In the present study, we report the discovery of a novel regulatory sulfated oxysterol in nuclei of primary rat hepatocytes after overexpression of the gene encoding mitochondrial cholesterol delivery protein (StarD1). Forty-eight hours after infection of the hepatocytes with recombinant StarD1 adenovirus, a water-soluble oxysterol product was isolated and purified by chemical extraction and reverse-phase HPLC.
View Article and Find Full Text PDFPurpose: This work was aimed at developing a semi-interpenetrating network (sIPN) co-electrospun gelatin/insulin fiber scaffold (GIF) formulation for transbuccal insulin delivery.
Methods: Gelatin was electrospun into fibers and converted into an sIPN following eosin Y-initiated polymerization of polyethylene glycol diacrylate (PEG-DA). The cytocompatibility, degradation rate and mechanical properties were examined in the resulting sIPNs with various ratios of PEG-DA to eosin Y to find a suitable formulation for transbuccal drug delivery.
Am J Physiol Endocrinol Metab
January 2014
Intracellular lipid accumulation, inflammatory responses, and subsequent apoptosis are the major pathogenic events of metabolic disorders, including atherosclerosis and nonalcoholic fatty liver diseases. Recently, a novel regulatory oxysterol, 5-cholesten-3b, 25-diol 3-sulfate (25HC3S), has been identified, and hydroxysterol sulfotransferase 2B1b (SULT2B1b) has been elucidated as the key enzyme for its biosynthesis from 25-hydroxycholesterol (25HC) via oxysterol sulfation. The product 25HC3S and the substrate 25HC have been shown to coordinately regulate lipid metabolism, inflammatory responses, and cell proliferation in vitro and in vivo.
View Article and Find Full Text PDFSulfotransferase (SULT)-mediated sulfation represents a critical mechanism in regulating the chemical and functional homeostasis of endogenous and exogenous molecules. The cholesterol sulfotransferase SULT2B1b catalyzes the sulfoconjugation of cholesterol to synthesize cholesterol sulfate (CS). In this study, we showed that the expression of SULT2B1b in the liver was induced in obese mice and during the transition from the fasted to the fed state, suggesting that the regulation of SULT2B1b is physiologically relevant.
View Article and Find Full Text PDFSterol regulatory element-binding protein-1c (SREBP-1c) increases lipogenesis at the transcriptional level, and its expression is upregulated by liver X receptor α (LXRα). The LXRα/SREBP-1c signaling may play a crucial role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). We previously reported that a cholesterol metabolite, 5-cholesten-3β,25-diol 3-sulfate (25HC3S), inhibits the LXRα signaling and reduces lipogenesis by decreasing SREBP-1c expression in primary hepatocytes.
View Article and Find Full Text PDFStarD5 belongs to the StarD4 subfamily of steroidogenic acute regulatory lipid transfer (START) domain proteins. In macrophages, StarD5 is found in the cytosol and maintains a loose association with the Golgi. Like StarD1 and StarD4, StarD5 is known to bind cholesterol.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
November 2012
Unlabelled: Oxysterols are well known as physiological ligands of liver X receptors (LXRs). Oxysterols, 25-hydroxycholesterol (25HC) and 27-hydroxycholesterol as endogenous ligands of LXRs, suppress cell proliferation via LXRs signaling pathway. Recent reports have shown that sulfated oxysterol, 5-cholesten-3β-25-diol-3-sulfate (25HC3S) as LXRs antagonist, plays an opposite direction to oxysterols in lipid biosynthesis.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
August 2012
Cytosolic sulfotransferase 2B1b (SULT2B1b) catalyzes the sulfation of 3β-hydroxysteroids and functions as a selective cholesterol and oxysterol sulfotransferase. Activation of liver X receptors (LXRs) by oxysterols has been known to be an antiproliferative factor. Overexpression of SULT2B1b impairs LXR's response to oxysterols, by which it regulates lipid metabolism.
View Article and Find Full Text PDFThe nuclear receptor peroxisome proliferator-activated receptors (PPARs) are important in regulating lipid metabolism and inflammatory responses in macrophages. Activation of PPARγ represses key inflammatory response gene expressions. Recently, we identified a new cholesterol metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), as a potent regulatory molecule of lipid metabolism.
View Article and Find Full Text PDFCytosolic sulfotransferase (SULT2B1b) catalyzes oxysterol sulfation. 5-Cholesten-3β-25-diol-3-sulfate (25HC3S), one product of this reaction, decreases intracellular lipids in vitro by suppressing liver X receptor/sterol regulatory element binding protein (SREBP)-1c signaling, with regulatory properties opposite to those of its precursor 25-hydroxycholesterol. Upregulation of SULT2B1b may be an effective strategy to treat hyperlipidemia and hepatic steatosis.
View Article and Find Full Text PDFStarD4 is a member of the StarD4 subfamily of START domain proteins with a characteristic lipid binding pocket specific for cholesterol. The objective of this study was to define StarD4 subcellular localization, regulation, and function. Immunobloting showed that StarD4 is highly expressed in the mouse fibroblast cell line 3T3-L1, in human THP-1 macrophages, Kupffer cells (liver macrophages), and hepatocytes.
View Article and Find Full Text PDF