Publications by authors named "Shunke Ding"

Article Synopsis
  • * Researchers measured reaction rates of chlorine with two compounds from seaweed, monoiodotyrosine (MIT) and diiodotyrosine (DIT), finding that temperature increases the rate of these reactions.
  • * The study identified multiple toxic byproducts formed during chlorination, with some having significant health risks, revealing the dangers of cooking with iodine-rich foods.
View Article and Find Full Text PDF

Neonicotinoid insecticides (NNIs), which have been detected across diverse aquatic environments, have sparked substantial concerns regarding their potential adverse ecological and health risks. In this study, the removal of NNIs by unactivated peroxymonosulfate (PMS) and peroxydisulfate (PDS) was systematically investigated. Results showed that PMS/PDS direct oxidation is mainly responsible for the degradation of imidacloprid (IMD), and the degradation kinetics can be well described by a second-order kinetics model, first-order in both IMD and PMS/PDS concentration.

View Article and Find Full Text PDF

Iodinated disinfection by-products (I-DBPs) exhibited potential health risk owing to the high toxicity. Our recent study demonstrated that I-DBPs from Laminaria japonica (Haidai), the commonly edible seaweed, upon simulated household cooking condition were several hundred times more than the concentration of drinking water. Here, the characterization of Haidai and its leachate tandem with the formation, identification and toxicity of I-DBPs from the cooking of Haidai were systemically investigated.

View Article and Find Full Text PDF

Sandstorms, a natural meteorological event, occur repeatedly during the dry season and can accumulate large amounts of natural/anthropogenic pollutants during the deposition process, potentially introducing disinfection by-product (DBP) precursors into surface waters. In this study, the characteristics of sandstorm-derived dissolved organic matter (DOM) and its DBP formation potential were elucidated. Overall, sandstorm-derived DOM mainly consisted of low-molecular-weight, low-aromaticity, high-nitrogen organic matter, with a dissolved organic carbon (DOC) release yield of 14.

View Article and Find Full Text PDF

The occurrence and transformation of microplastics (MPs) remaining in the water treatment plants has recently attracted considerable attention. However, few efforts have been made to investigate the behavior of dissolved organic matter (DOM) derived from MPs during oxidation processes. In this study, the characteristics of DOM leached from MPs during typical ultraviolet (UV)-based oxidation was focused on.

View Article and Find Full Text PDF

Ambroxol hydrochloride (AMB) and bromhexine hydrochloride (BRO) are classic expectorants and bronchosecretolytic pharmaceuticals. In 2022, both AMB and BRO were recommended by medical emergency department of China to alleviate cough and expectoration for symptoms caused by COVID-19. The reaction characteristics and mechanism of AMB/BRO with chlorine disinfectant in the disinfection process were investigated in this study.

View Article and Find Full Text PDF

Identification and characterization of disinfection by-product (DBP) precursors could help optimize drinking water treatment processes and improve the quality of finished water. This study comprehensively investigated the characteristics of dissolved organic matter (DOM), the hydrophilicity and molecule weight (MW) of DBP precursor and DBP-associated toxicity along the typical full-scale treatment processes. The results showed that dissolved organic carbon and dissolved organic nitrogen content, the fluorescence intensity and the SUVA value in raw water significantly decreased after the whole treatment processes.

View Article and Find Full Text PDF

Total organic halogen (TOX) is widely used as a surrogate bulk parameter to measure the overall exposure of halogenated disinfection byproducts (DBPs) in drinking water. In this study, we surprisingly found that the level of TOX in chlorinated waters had been significantly underestimated under common analytical conditions. After the addition of quenching agent sodium thiosulfate, total organic chlorine and total organic bromine exhibited a two-phase decomposition pattern with increasing contact time, and a significant decomposition was observed for different types of quenching agents, quenching doses, and pH conditions.

View Article and Find Full Text PDF

Iodinated disinfection by-products (I-DBPs) have attracted extensive interests because of their higher cytotoxicity and genotoxicity than their chlorinated and brominated analogues. Our recent studies have firstly demonstrated that cooking with seaweed salt could enhance the formation of I-DBPs with several tens of μg/L level. Here, I-DBP formation and mitigation from the reaction of disinfectant with Laminaria japonica (Haidai), an edible seaweed with highest iodine content, upon simulated household cooking process was systematically investigated.

View Article and Find Full Text PDF

Snow with large specific surface area and strong adsorption capacity can effectively adsorb atmospheric pollutants, which could/might lead to the increase of disinfection by-product (DBP) precursors in surface water. In this study, the contents and characteristics of dissolved organic matter (DOM) in meltwater were investigated, and DBP formation and the DBP-associated cytotoxicity index during chlorination of meltwater was first explored. Overall, meltwater exhibited high nitrogen contents.

View Article and Find Full Text PDF

Disinfection by-products (DBPs), formed from the reactions of disinfectants with natural organic matter and halides in drinking water, were considered to be cytotoxic and genotoxic, and might trigger various cancers. The relatively low concentration of DBPs in finished water (low µg/L or even ng/L levels) and the interference from water matrix inhibited in situ determination of DBPs. Moreover, the further formation and degradation of DBPs by disinfectants during the holding time (several hours to several days) from sample collection to analysis could adversely affect the determination of DBPs.

View Article and Find Full Text PDF

Disinfection by-products(DBPs) are secondary pollutants generated by the reaction of disinfectants with organic or inorganic precursors during drinking water disinfection. DBPs have received considerable global attention due to their carcinogenic, teratogenic, and mutagenic characteristics. Focusing on drinking water, this paper introduces the main classification and research history of DBPs, and then summarizes the concentration levels of common DBPs in drinking water, and DBPs regulatory compliance in global drinking water standards.

View Article and Find Full Text PDF

The unintended formation of disinfection by-products (DBPs) has received considerable attention as it may pose risks to human health. Coagulation is the most common process for removing particulates as well as dissolved organic matter (DOM) (i.e.

View Article and Find Full Text PDF

Coagulation is well-established for controlling regulated disinfection by-products (DBPs), but its effectiveness for controlling unregulated DBPs remains unclear. The efficiency of coagulation in controlling unregulated DBPs requires clarification owing to their relatively high toxicity. In this study, three Al-based coagulants, aluminum sulfate (Alum), polyaluminum chloride (PAC), and a novel type of covalently bond hybrid coagulant (CBC, synthesized using AlCl) were selected, and the coagulation performance of these Al-based coagulants in controlling DBPs and DBP-associated toxicity was compared over 5 classes of DBPs, including trihalomethanes, haloacetic acids, haloacetaldehydes, haloacetonitriles, and halonitromethanes.

View Article and Find Full Text PDF

The Yangtze River basin covers one-fifth of China's land area and serves as a water source for one-third of China's population. During long-distance water transport from upstream to downstream, various sources of dissolved organic matter (DOM) lead to considerable variation in DOM properties, significantly impacting water treatability and disinfection byproduct (DBP) formation after chlorination. Using size-exclusion chromatography and fluorescence spectroscopy, the spatial variation in DOM characteristics was comprehensively investigated on a basin scale.

View Article and Find Full Text PDF

Ultrasound techniques have gained increased interest in environmental remediation because of their promising performance and reagent-free nature. This study investigated the effects of ultrasound-coagulation on Microcystis aeruginosa removal, disinfection by-product (DBP) formation during subsequent chlorination, and acute toxicity and DBP-associated toxicity variations in chlorinated effluents. Compared with coagulation using polymeric aluminum chloride (5 mg-Al/L) alone, ultrasound-coagulation showed significantly enhanced turbidity removal, with the removal ratio increasing from 51% to 87%-96%.

View Article and Find Full Text PDF

To remove disinfection by-product (DBP) precursors and mitigate odor compounds, peroxide (peroxymonosulfate and persulfate)/Fe(II)-based process was applied as a combination of coagulation and oxidation. Compared with traditional Fe-based salt coagulation (FeSO and FeCl), peroxide/Fe(II)-based process was more efficient in dissolved organic carbon, UV and turbidity removal, and peroxymonosulfate showed better performance than persulfate. The better coagulation performance arose from a combination of enhanced neutralization and different characteristics of flocs.

View Article and Find Full Text PDF

Due to the spread of coronavirus disease 2019 (COVID-19), large amounts of antivirals were consumed and released into wastewater, posing risks to the ecosystem and human health. Ozonation is commonly utilized as pre-oxidation process to enhance the disinfection of hospital wastewater during COVID-19 spread. In this study, the transformation of ribavirin, antiviral for COVID-19, during ozone/PMS‑chlorine intensified disinfection process was investigated.

View Article and Find Full Text PDF

Reverse osmosis (RO), a promising technology for removing inorganic salts and a wide range of trace organic pollutants, is widely used in water treatment industry. In this study, the rejection of chlorinated, brominated, and iodinated trihalomethanes (THMs) by a multi-stage RO system was investigated. The results showed that the multi-stage RO system is effective in rejecting THMs, and THMs with large size, high hydrophobicity and low polarity were highly rejected.

View Article and Find Full Text PDF

Syringe filters are widely used for sample pretreatments in laboratories. This study found that, surprisingly, these filters can leak dissolved organic carbon (DOC) that can potentially serve as precursors of disinfection by-products (DBPs). Nine common types of syringe filters were assessed.

View Article and Find Full Text PDF

The effects of UV/HO pre-oxidation or disinfection methods on the formation of partial disinfection by-products (DBPs) have been studied previously. This study assessed the effect of UV/HO pre-oxidation combined with optimisation of the disinfection method on the formation of six classes of CXR-type DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetaldehydes (HALs), haloacetonitriles (HANs), halonitromethanes (HNMs), and haloacetamides (HAMs). Experimental results showed that a simulated distribution system (SDS) in-situ chloramination or pre-chlorination followed by chloramination effectively decreased total CXR-type DBP formation by 51.

View Article and Find Full Text PDF

Iodinated disinfection byproducts (I-DBPs) are of particular concern in drinking water due to the more cytotoxic and genotoxic properties than their chlorinated and brominated analogs. Formation of I-DBP primarily results from the oxidation of iodide-containing waters with various oxidants and the chlor(am)ination of iodinated organic compounds in drinking water. This study first reports that ferric chloride (FeCl) can lead to the formation of iodinated coagulation byproducts (I-CBPs) from iodide-containing resorcinol solution or natural waters.

View Article and Find Full Text PDF

The present study investigated the effect of oxoanions on catalytic behaviour of copper corrosion products (CCPs) during chlorination of bromide-containing waters. Three types of oxoanions (carbonate, sulphate, and phosphate) and four types of CCPs (Cu, Cu(OH), CuO, and CuO) were involved in investigation and the effect of oxoanions concentration was also examined. The result indicated that carbonate and sulphate slightly inhibited oxidant decay in the presence of CCPs, but the formation of brominated disinfection by-products (Br-DBPs) remained largely unchanged.

View Article and Find Full Text PDF

Unintended effects of engineering agents and materials on the formation of undesirable disinfection byproducts (DBPs) during drinking water treatment and distribution were comprehensively reviewed. Specially, coagulants, biologically active filtration biofilms, activated carbons, nanomaterials, ion-exchange resins, membrane materials in drinking water treatment and piping materials, deposits and biofilms within drinking water distribution systems were discussed, which may serve as DBP precursors, transform DBPs into more toxic species, and/or catalyze the formation of DBPs. Speciation and quantity of DBPs generated rely heavily on the material characteristics, solution chemistry conditions, and operating factors.

View Article and Find Full Text PDF

Haloacetamides (HAMs), an emerging class of disinfection by-products, have received increasing attention due to their elevated cyto- and genotoxicity. However, only limited information is available regarding the iodinated analogues. This study investigated the formation and speciation of iodinated haloacetamides (I-HAMs) and their chlorinated/brominated analogues during the chloramination of bromide and/or iodide-containing waters and a model compound solution over various time periods.

View Article and Find Full Text PDF