An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF2.
View Article and Find Full Text PDFDopamine, alongside other neuromodulators, defines brain and neuronal states, through regulation of global and local mRNA translation. Yet, the signaling pathways underlying the effects of dopamine on mRNA translation and psychiatric disorders are not clear. In order to examine the molecular pathways downstream of dopamine receptors, we used genetic, pharmacologic, biochemical, and imaging methods, and found that activation of dopamine receptor D1 but not D2 leads to rapid dephosphorylation of eEF2 at Thr but not eIF2α in cortical primary neuronal culture in a time-dependent manner.
View Article and Find Full Text PDFAging is a major risk factor for many diseases including metabolic syndrome, cancer, inflammation, and neurodegeneration. Identifying mechanistic common denominators underlying the impact of aging is essential for our fundamental understanding of age-related diseases and the possibility to propose new ways to fight them. One can define aging biochemically as prolonged metabolic stress, the innate cellular and molecular programs responding to it, and the new stable or unstable state of equilibrium between the two.
View Article and Find Full Text PDFThe trace fear conditioning protocol is designed to measure hippocampal function in mice. The protocol includes a neutral conditioned stimulus (tone) and an aversive unconditioned stimulus (shock), separated in time by a trace interval. The trace interval between the tone and the shock critically involves the hippocampus and could be used to evaluate hippocampal-dependent learning and memory.
View Article and Find Full Text PDFThe current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola ( ≥ 5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA).
View Article and Find Full Text PDFThe amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases.
View Article and Find Full Text PDFOne of the hallmarks of learning processes in any species studied so far is that they require intact protein synthesis machinery in order to consolidate memories. Interestingly, synaptic plasticity and consolidation processes share similar molecular mechanisms. In recent years, different laboratories have been studying regulation of translation machinery as a molecular entity underlying the consolidation process.
View Article and Find Full Text PDFmRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time.
View Article and Find Full Text PDFFront Behav Neurosci
October 2012
The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism.
View Article and Find Full Text PDFEvidence concerning ion-channel abnormalities in the pathophysiology of common psychiatric disorders is still limited. Given the significance of ion channels in neuronal activity, neurotransmission and neuronal plasticity we hypothesized that the expression patterns of genes encoding different ion channels may be altered in schizophrenia, bipolar and unipolar disorders. Frozen samples of striatum including the nucleus accumbens (Str-NAc) and the lateral cerebellar hemisphere of 60 brains from depressed (MDD), bipolar (BD), schizophrenic and normal subjects, obtained from the Stanley Foundation Brain Collection, were assayed.
View Article and Find Full Text PDFBackground: Mitochondria have been suggested to be involved in the pathology of bipolar disorder (BD) and schizophrenia. However, the mechanism underlying mitochondrial dysfunction is unclear. Mitochondrial network dynamics, which reflects cellular metabolic state, is important for embryonic development, synapse formation, and neurodegeneration.
View Article and Find Full Text PDF