Publications by authors named "Shunichi Sakamoto"

Shape-memory materials can be mechanically deformed and subsequently reverse the deformation upon changing the temperature. Shape-memory materials have attracted considerable attention for basic research and industrial applications, and polymer and alloy shape-memory materials have been well studied; however, it is formidably challenging to develop functional shape-memory materials, such as materials with multi-stage and anisotropic shape changes and shape changes accompanied by changes in color and light emission. Here, we found a reversible multi-stage shape-changing effect after mechanical deformation in a molecular crystal induced by multi-step thermal phase transitions with reversible shape changes and luminescence-color changes.

View Article and Find Full Text PDF

Chromism-color changes by external stimuli-has been intensively studied to develop smart materials because of easily detectability of the stimuli by eye or common spectroscopy as color changes. Luminescent chromism has particularly attracted research interest because of its high sensitivity. The color changes typically proceed in a one-way, two-state cycle, i.

View Article and Find Full Text PDF

Ferroelasticity has been reported for several types of molecular crystals, which show mechanical-stress-induced shape change under twinning and/or spontaneous formation of strain. Aiming to create materials that exhibit both ferroelasticity and light-emission characteristics, we discovered the first examples of ferroelastic luminescent organometallic crystals. Crystals of arylgold(I)(N-heterocyclic carbene)(NHC) complexes bend upon exposure to anisotropic mechanical stress.

View Article and Find Full Text PDF

Mechanical twinning changes atomic, molecular, and crystal orientations along with directions of the anisotropic properties of the crystalline materials while maintaining single crystallinity in each domain. However, such deformability has been less studied in brittle organic crystals despite their remarkable anisotropic functions. Herein we demonstrate a direction-dependent mechanical twinning that shows superelasticity in one direction and ferroelasticity in two other directions in a single crystal of 1,3-bis(4-methoxyphenyl)urea.

View Article and Find Full Text PDF

As altering permanent shapes without loss of material function is of practical importance for material molding, especially for elastic materials, shape-rememorization ability would enhance the utility of elastic crystalline materials. Since diffusionless plastic deformability can preserve the crystallinity of materials, the interconversion of diffusionless mechanical deformability between superelasticity and ferroelasticity could enable shape rememorization of superelastic single crystals. This study demonstrates the shape rememorization of an organosuperelastic single crystal of 1,4-dicyanobenzene through time-reversible interconversion of superelasticity-ferroelasticity relaxation by holding the mechanically twinned crystal without heating.

View Article and Find Full Text PDF

Purpose: Animal experiments have shown that the loss of occlusal support causes impairments in spatial cognition. Many reports have focused on the memory encoding process, and only few studies have investigated the effect on memory retrieval. This study aimed to examine the effects of both the loss and reconstruction of occlusal support on the memory retrieval process and on the number of hippocampal pyramidal cells.

View Article and Find Full Text PDF

Aims: Although body posture in relation to the dental condition has been of great interest in the dental profession, rumination bias has been a substantial obstacle to achieving a reliable objective evaluation of the intrinsic body posture. The aim of this study was to establish a posture control protocol that would minimize the effect of bias.

Methodology: Fifteen healthy male volunteers (23-33 years of age) participated in this study.

View Article and Find Full Text PDF

Objectives: The present study aimed to identify the effect of memory-related genes on male rats tested for spatial memory with either molar teeth extraction or its restoration by occlusal support using experimental dentures.

Design: Memory-related genes were detected from hippocampi of male Wistar rats (exposed to teeth extraction with or without dentures, or no extraction (control)) (7-week old) after behavioural testing (via the radial maze task) using a DNA microarray. The time course of the expression of these genes was evaluated by quantitative real-time polymerase chain reaction (PCR) (on 49-week-old rats).

View Article and Find Full Text PDF

Objective: The study aims to investigate the dynamic perception of a force applied to the upper first molar for different rates of force increase.

Design: Six volunteers (four male and two female; mean age, 27.2±2.

View Article and Find Full Text PDF

The activity of the lateral pterygoid muscle has been regarded to be related to the pathological condition of the temporomandibular joint (TMJ) in the craniomandibular disorders. Because the lateral pterygoid muscle is a deep muscle, a needle electrode is necessary for EMG recordings. The purpose of this study was to establish a non-invasive method for the evaluation of muscle activity of the lateral pterygoid muscle using mechanomyogram (MMG).

View Article and Find Full Text PDF