Publications by authors named "Shunfeng Wang"

Pyrophosphate-stabilized amorphous calcium carbonates (PyACC) are promising compounds for bone repair due to their ability to release calcium, carbonate, and phosphate ions following pyrophosphate hydrolysis. However, shaping these metastable and brittle materials using conventional methods remains a challenge, especially in the form of macroporous scaffolds, yet essential to promote cell colonization. To overcome these limitations, this article describes for the first time the design and multiscale characterization of freeze-cast alginate (Alg)-PyACC nanocomposite scaffolds.

View Article and Find Full Text PDF

Inorganic materials are of increasing interest not only for bone repair but also for other applications in regenerative medicine. In this study, the combined effects of energy-providing, regeneratively active inorganic polyphosphate (polyP) and also morphogenetically active pearl powder on wound healing were investigated. Aragonite, the mineralic constituent of pearl nacre and thermodynamically unstable form of crystalline calcium carbonate, was found to be converted into a soluble state in the presence of a Ca-containing wound exudate, particularly upon addition of sodium polyP (Na-polyP), driven by the transfer of Ca ions from aragonite to polyP, leading to liquid-liquid phase separation to form an aqueous Ca-polyP coacervate.

View Article and Find Full Text PDF

Nanoparticles of a particular, evolutionarily old inorganic polymer found across the biological kingdoms have attracted increasing interest in recent years not only because of their crucial role in metabolism but also their potential medical applicability: it is inorganic polyphosphate (polyP). This ubiquitous linear polymer is composed of 10-1000 phosphate residues linked by high-energy anhydride bonds. PolyP causes induction of gene activity, provides phosphate for bone mineralization, and serves as an energy supplier through enzymatic cleavage of its acid anhydride bonds and subsequent ATP formation.

View Article and Find Full Text PDF

There is a need for novel nanomaterials with properties not yet exploited in regenerative nanomedicine. Based on lessons learned from the oldest metazoan phylum, sponges, it has been recognized that two previously ignored or insufficiently recognized principles play an essential role in tissue regeneration, including biomineral formation/repair and wound healing. Firstly, the dependence on enzymes as a driving force and secondly, the availability of metabolic energy.

View Article and Find Full Text PDF

Amorphous calcium carbonate (ACC), precipitated in the presence of inorganic polyphosphate (polyP), has shown promise as a material for bone regeneration due to its morphogenetic and metabolic energy (ATP)-delivering properties. The latter activity of the polyP-stabilized ACC ("ACC∙PP") particles is associated with the enzymatic degradation of polyP, resulting in the transformation of ACC into crystalline polymorphs. In a novel approach, stimulated by these results, it was examined whether "ACC∙PP" also promotes the healing of skin injuries, especially chronic wounds.

View Article and Find Full Text PDF

Inorganic polyphosphates (polyP) are long-chain polymers of orthophosphate residues, which, depending on the external conditions, can be present both physiologically and synthetically in either soluble, nanoparticulate or coacervate form. In recent years, these polymers have received increasing attention due to their unprecedented ability to exhibit both morphogenetic and metabolic energy delivering properties. There are no other physiological molecules that contain as many metabolically utilizable, high-energy bonds as polyP, making these polymers of particular medical interest as components of advanced hydrogel scaffold materials for potential applications in ATP-dependent tissue regeneration and repair.

View Article and Find Full Text PDF

Calcium phosphate (CaP) deposition during bone mineralization starts with the aggregation of Posner's clusters Ca(PO) into amorphous Ca-phosphate (ACP), which then transforms into crystalline CaP and finally maturates to hydroxyapatite (HA). Using dentin/enamel of human teeth as a model system, we show that the physiological inorganic polymer polyphosphate (polyP), a phosphate donor in mineralization, prevents the transition from amorphous to crystalline CaP at concentrations> 15 wt%. Stabilization of the amorphous phase of CaP by polyP is reversed by hydrolysis of the polymer by alkaline phosphatase (ALP), an enzyme that releases phosphate for mineralization.

View Article and Find Full Text PDF

Inorganic polyphosphates (polyP) are of increasing medical interest due to their unprecedented ability to exhibit both morphogenetic and ATP-delivering properties. However, these polymers are only physiologically active in the coacervate state, but not as amorphous nanoparticles (NP), the storage form of the polymer. Little is known about the mechanism of formation and interconversion of these two distinct polyP phases in the presence of metal ions.

View Article and Find Full Text PDF
Article Synopsis
  • In recent years, scientists have become really interested in a special substance called inorganic polyphosphate (polyP) because it can help with healing body tissues.
  • PolyP can help cells grow and change into different types by turning on certain genes, and it can also store energy for cells.
  • Researchers can create different forms of polyP, like tiny particles or gels, that can be combined with other materials to help with healing bones, cartilage, and even injuries to the eyes!
View Article and Find Full Text PDF

Many pathological conditions are characterized by a deficiency of metabolic energy. A prominent example is nonhealing or difficult-to-heal chronic wounds. Because of their unique ability to serve as a source of metabolic energy, inorganic polyphosphates (polyP) offer the opportunity to develop novel strategies to treat such wounds.

View Article and Find Full Text PDF

Two biocatalytically produced inorganic biomaterials show great potential for use in regenerative medicine but also other medical applications: bio-silica and bio-polyphosphate (bio-polyP or polyP). Biosilica is synthesized by a group of enzymes called silicateins, which mediate the formation of amorphous hydrated silica from monomeric precursors. The polymeric silicic acid formed by these enzymes, which have been cloned from various siliceous sponge species, then undergoes a maturation process to form a solid biosilica material.

View Article and Find Full Text PDF

The healing of chronic wounds is impaired by a lack of metabolic energy. In previous studies, we showed that physiological inorganic polyphosphate (polyP) is a generator of metabolic energy by forming ATP as a result of the enzymatic cleavage of the high-energy phosphoanhydride bonds of this polymer. Therefore, in the present study, we investigated whether the administration of polyP can substitute for the energy deficiency in chronic wound healing.

View Article and Find Full Text PDF

The three-dimensional (3D)-printing processes reach increasing recognition as important fabrication techniques to meet the growing demands in tissue engineering. However, it is imperative to fabricate 3D tissue units, which contain cells that have the property to be regeneratively active. In most bio-inks, a metabolic energy-providing component is missing.

View Article and Find Full Text PDF

Precast geopolymers with lower water/binder (0.14), which mainly consists of alkali solution, fly ash (FA) and steel slag (SS), were manufactured through molding pressing technology. The failure mechanisms of precast geopolymers after water immersion were studied by testing the loss of compressive strength, the pH of the leaching solution, the concentration of ions (Na, Ca, Si and Al), the evolution of phases, pore structure and morphology, and further discussion of the regulation evolution was performed.

View Article and Find Full Text PDF

Conventional face masks to prevent SARS-CoV-2 transmission are mostly based on a passive filtration principle. Ideally, anti-COVID-19 masks should protect the carrier not only by size exclusion of virus aerosol particles, but also be able to capture and destroy or inactivate the virus. Here we present the proof-of-concept of a filter mat for such a mask, which actively attracts aerosol droplets and kills the virus.

View Article and Find Full Text PDF

The pandemic caused by the novel coronavirus SARS-CoV-2 is advancing rapidly. In particular, the number of severe courses of the disease is still dramatically high. An efficient drug therapy that helps to improve significantly the fatal combination of damages in the airway epithelia, in the extensive pulmonary microvascularization and finally multiorgan failure, is missing.

View Article and Find Full Text PDF

The anti-cancer antitumor antibiotic bleomycin(s) (BLM) induces athyminic sites in DNA after its activation, a process that results in strand splitting. Here, using A549 human lung cells or BEAS-2B cells lunc cells, we show that the cell toxicity of BLM can be suppressed by addition of inorganic polyphosphate (polyP), a physiological polymer that accumulates and is released from platelets. BLM at a concentration of 20 µg ml causes a decrease in cell viability (by ~70%), accompanied by an increased DNA damage and chromatin expansion (by amazingly 6-fold).

View Article and Find Full Text PDF

Inorganic polyphosphate (polyP) is a widely distributed polymer found from bacteria to animals, including marine species. This polymer exhibits morphogenetic as well as antiviral activity and releases metabolic energy after enzymatic hydrolysis also in human cells. In the pathogenesis of the coronavirus disease 2019 (COVID-19), the platelets are at the frontline of this syndrome.

View Article and Find Full Text PDF

The mucus layer of the nasopharynx and bronchial epithelium has a barrier function against inhaled pathogens such as the coronavirus SARS-CoV-2. We recently found that inorganic polyphosphate (polyP), a physiological, metabolic energy (ATP)-providing polymer released from blood platelets, blocks the binding of the receptor binding domain (RBD) to the cellular ACE2 receptor in vitro. PolyP is a marine natural product and is abundantly present in marine bacteria.

View Article and Find Full Text PDF

The effect of the polyanionic polymer of inorganic polyphosphate (polyP) involved in innate immunity on the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to the cellular ACE2 receptor was studied. The RBD surface comprises a basic amino acid stretch of four arginine residues which interact with the physiological polyP (polyP) and polyP. Subsequently, the interaction of RBD with ACE2 is sensitively inhibited.

View Article and Find Full Text PDF

In the present study, the fabrication of a biomimetic wound dressing that mimics the extracellular matrix, consisting of a hydrogel matrix composed of non-oxidized and periodate-oxidized marine alginate, was prepared to which gelatin was bound via Schiff base formation. Into this alginate/oxidized-alginate-gelatin hydrogel, polyP was stably but reversibly integrated by ionic cross-linking with Zn ions. Thereby, a soft hybrid material is obtained, consisting of a more rigid alginate scaffold and porous structures formed by the oxidized-alginate-gelatin hydrogel with ionically cross-linked polyP.

View Article and Find Full Text PDF

A drug encapsulation/delivery system using a novel principle is described that is based on an intra-particle migration of calcium ions between a central Ca-enriched nanoparticle core and the surrounding shell compartment. The supply of Ca is needed for the formation of a coacervate shell around the nanoparticles, acting as the core of drug-loadable core-shell particles, using the physiological inorganic polymer polyphosphate (polyP). This polyanion has the unique property to form, at an alkaline pH and in the presence of a stoichiometric surplus of calcium ions, water-insoluble and stabile amorphous nanoparticles.

View Article and Find Full Text PDF

Inorganic polyphosphate (polyP) is a morphogenetically active and metabolic energy-delivering physiological polymer that is released from blood platelets. Here, we show that polyP efficiently inhibits the binding of the envelope spike (S)-protein of the coronavirus SARS-CoV-2, the causative agent of COVID-19, to its host cell receptor ACE2 (angiotensin-converting enzyme 2). To stabilize polyP against the polyP-degrading alkaline phosphatase, the soluble polymer was encapsulated in silica/polyP nanoparticles.

View Article and Find Full Text PDF

The distinguished property of the physiological polymer, inorganic polyphosphate (polyP), is to act as a bio-intelligent material which releases stimulus-dependent metabolic energy to accelerate wound healing. This characteristic is based on the bio-imitating feature of polyP to be converted, upon exposure to peptide-containing body fluids, from stable amorphous nanoparticles to a physiologically active and energy-delivering coacervate phase. This property of polyP has been utilized to fabricate a wound mat consisting of compressed collagen supplemented with amorphous polyP particles, formed from the inorganic polyanion with an over-stoichiometric ratio of zinc ions.

View Article and Find Full Text PDF

Cement is used both as a construction material and for medical applications. Previously, it has been shown that the physiological polymer inorganic polyphosphate (polyP) is morphogenetically active in regeneration of skin, bone, and cartilage. The present study investigates the question if this polymer is also a suitable additive to improve the self-healing capacity not only of construction cement but also of inorganic bone void fillers.

View Article and Find Full Text PDF