The utilization of micronano composite scaffolds has been extensively demonstrated to confer the superior advantages in bone repair compared to single nano- or micron-sized scaffolds. Nevertheless, the enhancement of bioactivities within these composite scaffolds remains challenging. In this study, we propose a novel approach to combine melt electrowriting (MEW) and solution electrospinning (SES) techniques for the fabrication of a composite scaffold incorporating hydroxyapatite (HAP), an osteogenic component, and roxithromycin (ROX), an antibacterial active component.
View Article and Find Full Text PDFWound healing is a systematic and complex process that involves various intrinsic and extrinsic factors affecting different stages of wound repair. Therefore, multifunctional wound dressings that can modulate these factors to promote wound healing are in high demand. In this work, a multifunctional Janus electrospinning nanofiber dressing with antibacterial and anti-inflammatory properties, controlled release of drugs, and unidirectional water transport was prepared by depositing coaxial nanofibers on a hydrophilic poly(ε-caprolactone)@polydopamine-ε-polyl-lysine (PCL@PDA-ε-PL) nanofiber membrane.
View Article and Find Full Text PDF