Publications by authors named "Shunbin Lu"

Room-temperature interaction between light-matter hybrid particles such as exciton-polaritons under extremely low-pump plays a crucial role in future coherent quantum light sources. However, the practical and scalable realization of coherent quantum light sources operating under low-pump remains a challenge because of the insufficient polariton interaction strength. Here, at room temperature, a very large polariton interaction strength is demonstrated, g ≈ 128 ± 21 µeV µm realized in a 2D nanolayered metal-organic framework (MOF).

View Article and Find Full Text PDF

All-optical modulator is a crucial device in next generation of all-optical communications, interconnects, and signal processing. Here, we demonstrate an all-optical phase modulator with graphdiyne (GDY)-deposited microfiber structure. The phase shift of the signal light can be readily controlled by pump light by thermo-optic effect.

View Article and Find Full Text PDF

A simple and effective approach based on the liquid phase exfoliation (LPE) method has been put forward for synthesizing boron quantum dots (BQDs). By adjusting the interactions between bulk boron and various solvents, the average diameter of produced BQDs is about 7 nm. The nonlinear absorption (NLA) responses of as-prepared BQDs have been systematically studied at 515 nm and 1030 nm.

View Article and Find Full Text PDF

Multiphoton absorption may find many technological applications, such as enhancing the conversion efficiency of solar cells by the utilization of sub-band-energy photons, below-bandgap photodetection through the simultaneous absorption of several infrared photons for photocurrent generation, or light frequency upconversion for high-resolution, 3D imaging. To enhance multiphoton absorption in semiconducting materials, one of the strategies is to explore low-dimensional excitons. Here, a quantum perturbation theory on a giant enhancement in three-photon absorption (3PA) arising from 2D excitons in multilayered crystals of organic-inorganic hybrid perovskites is presented.

View Article and Find Full Text PDF

By applying quantum perturbation theory to two-dimensional excitons in monolayer transition metal dichalcogenides (TMDCs), we develop a theoretical model for two-photon absorption in the near infrared spectral region. By assuming the bandwidth of the final excitonic state to be 0.15 eV, the two-photon absorption coefficients are as high as 50 cm/MW and selenium-based, monolayer TMDCs exhibit greater 2PA coefficients than sulfur-based, monolayer TMDCs.

View Article and Find Full Text PDF

Black phosphorus (BP), a promising new two-dimensional (2D) material, has drawn a lot of attentions in academia and industry due to its extraordinary physical and chemical properties. In this paper, we theoretically demonstrate a monolayer BP that achieves coherent perfect absorption (CPA) at the THz/infrared band. It is found that quasi-CPA point does exist at the THz/infrared band.

View Article and Find Full Text PDF

We experimentally demonstrated that few-layer black phosphorus (BP) could be used as an optical modulator for solid-state lasers to generate short laser pulses. The BP flakes were fabricated by the liquid phase exfoliation method and drop-casted on a high-reflection mirror to form a BP-based saturable absorber mirror (BP-SAM). Stable Q-switched pulses with a pulse width of 620 ns at the wavelength of 1046 nm were obtained in a Yb:CaYAlO(4) (Yb:CYA) laser with the BP-SAM.

View Article and Find Full Text PDF

By performing the Z-scan measurements at 800 nm using a femtosecond pulsed laser, we are able to characterize the nonlinear refractive indices of Nd, Y codoped CaF(2) and SrF(2) crystals. Based on our measured results, we conclude that the doped fluoride crystal possesses a small nonlinear refractive index and the doping of Nd(3+) and Y(3+) ions in CaF(2) can change its third-order nonlinear index, but the contribution is minor. The doped fluoride crystal may have large potential to be developed as the next generation of gain material for a high-energy laser system.

View Article and Find Full Text PDF

In this paper, we experimentally found that the transfer quality of CVD-grown graphene could be improved by ultrasonic processing (UP) of target substrates thanks to the improved hydrophilicity. Atomic force micrograph and Raman spectroscopy revealed that the graphene films transferred onto the target substrate with UP possess less wrinkles and defects than that of the sample without UP. The improvement technique endows graphene more suitable for photonics applications because of its weaker optical loss, higher optical damage threshold and longer stability.

View Article and Find Full Text PDF

The third order nonlinear optical property of Bi₂Se₃, a kind of topological insulator (TI), has been investigated under femto-second laser excitation. The open and closed aperture Z-scan measurements were used to unambiguously distinguish the real and imaginary part of the third order optical nonlinearity of the TI. When excited at 800 nm, the TI exhibits saturable absorption with a saturation intensity of 10.

View Article and Find Full Text PDF

Based on the open-aperture Z-scan measurement, we firstly uncovered the saturable absorption property of the topological insulator (TI): Bi2Se3. A high absolute modulation depth up to 98% and a saturation intensity of 0.49 GWcm(-2) were identified.

View Article and Find Full Text PDF

We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than 80 µW, evidencing the microwave saturable absorption property of graphene. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at 1053 nm, respectively.

View Article and Find Full Text PDF