Publications by authors named "Shun-ping Jin"

Ion mobility spectrometry (IMS) is based on determining the drift velocities, which the ionized sample molecules attain in the weak electric field of a drift tube at atmospheric pressure. The drift behavior can be affected by structural differences of the analytes, so that ion mobility spectrometry has the ability to separated isomeric compounds. In the present article, an introduction to IMS is given, followed by a description of the instrument used for the experiments to differentiate isomeric compounds.

View Article and Find Full Text PDF

Ion mobility spectrometry (IMS) is a very fast, highly sensitive, and inexpensive technique, it permits efficient monitoring of volatile organic compounds like alcohols. In this article, positive ion mobility spectra for six alcohol organic compounds have been systematically studied for the first time using a high-resolution IMS apparatus equipped with a discharge ionization source. Utilizing protonated water cluster ions (H2O)n H+ as the reactant ions and clean air as the drift gas, alcohol organic compounds, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol and 2-octanol, all exhibit product ion characteristic peaks in their respective ion mobility spectrometry, that is a result of proton transfer reactions between the alcohols and reaction ions (H2O)n H+.

View Article and Find Full Text PDF

Ion mobility spectrometry (IMS) is a sensitive technique for fast on-line monitoring trace volatile organic compounds based upon the mobilities of gas phase ions at ambient pressure in weak electric field. In the present work, protonated water reactant ions were successfully prepared, and eight ketones were studied on a homemade high-resolution IMS apparatus using a discharge ionization source. The reduced mobility values of all ions were derived from the observed ion mobility spectra.

View Article and Find Full Text PDF