Publications by authors named "Shun-ichi Kurata"

TP63 (p63) is strongly expressed in lower-grade carcinomas of the head and neck, skin, breast, and urothelium to maintain a well-differentiated phenotype. TP63 has two transcription start sites at exons 1 and 3' that produce TAp63 and ΔNp63 isoforms, respectively. The major protein, ΔNp63α, epigenetically activates genes essential for epidermal/craniofacial differentiation, including ΔNp63 itself.

View Article and Find Full Text PDF

Cancer is a leading cause of death and disease worldwide, with a tremendous financial impact. Thus, the development of cost-effective novel approaches for suppressing tumor growth and progression is essential. In an attempt to identify the mechanisms responsible for tumor suppression, we screened for molecules downregulated in a cancer progression model and found that the chemokine CXCL14, also called BRAK, was the most significantly downregulated.

View Article and Find Full Text PDF

TP63 (p63), a member of the tumor suppressor TP53 (p53) gene family, is essential for ectodermal tissue development and suppresses malignant progression of carcinomas. The most abundant isoform, ΔNp63α (referred to as p63), lacks the N-terminal transactivation (TA) domain, and was originally characterized as a dominant-negative type suppressor against p53 family proteins. It also binds to TCF/LEF to inhibit β-catenin.

View Article and Find Full Text PDF

Submitted: TP63 (p63), a member of the tumor suppressor TP53 (p53) gene family, is expressed in keratinocyte stem cells and well-differentiated squamous cell carcinomas to maintain cellular potential for growth and differentiation. Controversially, activation of the Wnt/β-catenin signaling by p63 (Patturajan M. et al.

View Article and Find Full Text PDF

Since the human genome sequences became available in 2001, our knowledge about the human transposable elements which comprise ∼40% of the total nucleotides has been expanding. Non-long terminal repeat (non-LTR) retrotransposons are actively transposing in the present-day human genome, and have been found to cause ∼100 identified clinical cases of varied disorders. In contrast, almost all of the human endogenous retroviruses (HERVs) originating from ancient infectious retroviruses lost their infectivity and transposing activity at various times before the human-chimpanzee speciation (∼6 million years ago), and no known HERV is presently infectious.

View Article and Find Full Text PDF

The human and Old World primate genomes possess conserved endogenous retrovirus sequences that have been implicated in evolution, reproduction, and carcinogenesis. Human endogenous retrovirus (HERV)-K with 5'LTR-gag-pro-pol-env-rec/np9-3'LTR sequences represents the newest retrovirus family that integrated into the human genome 1 to 5 million years ago. Although a high-level expression of HERV-K in melanomas, breast cancers, and teratocarcinomas has been demonstrated, the mechanism of the lineage-specific activation of the long terminal repeat (LTR) remains obscure.

View Article and Find Full Text PDF

The expression of p63 (TP63/p51) occurs in the basal cells of stratified epithelia and is strongly enhanced at the early stages of squamous cell carcinomas (SCCs) of the head and neck, skin, cervix, and others. We analyzed a promoter/enhancer region (2kΔN) that drives the predominant expression of ΔNp63 for sensitivity to Smad signaling pathways. Reporter assays in HepG2 cells showed a moderate activation of 2kΔN by Smad2 and IκB kinase α (IKKα), partners of the newly identified keratinocyte-specific transforming growth factor β (TGF-β) signaling, but not by other Smad molecules.

View Article and Find Full Text PDF

To explore how the intrinsic apoptosis pathway is controlled in the spontaneous fog (forebrain overgrowth) mutant mice with an Apaf1 splicing deficiency, we examined spleen and bone marrow cells from Apaf1(+/+) (+/+) and Apaf1(fog/fog) (fog/fog) mice for initiator caspase-9 activation by cellular stresses. When the mitochondrial inner membrane potential (Deltapsim) was disrupted by staurosporine, +/+ cells but not fog/fog cells activated caspase-9 to cause apoptosis, indicating the lack of apoptosome (apoptosis protease activating factor 1 (Apaf-1)/cytochrome c/(d)ATP/procaspase-9) function in fog/fog cells. However, when a marginal ( approximately 20%) decrease in Deltapsim was caused by hydrogen peroxide (0.

View Article and Find Full Text PDF

Mouse milk fat globule-EGF factor 8, MFG-E8, is the ortholog to the human mammary tumor marker, lactadherin, and comprises two spliced variants, the L and S forms. Recent studies have suggested that MFG-E8-L produced by macrophages and Langerhans cells in the skin serves as a linker between phagocytic cells and apoptotic cells, and that MFG-E8-S, also termed SED1, facilitates sperm-egg interaction for fertilization. However, Mfge8 gene expression occurs in various tissues apparently unrelated to these critical events.

View Article and Find Full Text PDF

p51/p63, a member of the tumor suppressor p53 gene family, is crucial for skin development. We describe here identification of ITGA3 encoding integrin alpha(3) as a target of its trans-activating function, proposing that p51/p63 allows epidermal stem cells to express laminin receptor alpha(3)beta(1) for anchorage to the basement membrane. When activated by genotoxic stress or overexpressed ectopically in non-adherent cells, p51/p63 transduced a phenotype to attach to extracellular matrices, which was accompanied by expression of ITGA3.

View Article and Find Full Text PDF

We studied the mechanism of intra-mitochondrial death initiator caspase-9 activation by a redox response, in which hydrogen peroxide (H(2)O(2)) caused a subtle decrease in the inner membrane potential (Deltapsim) with little evidence of cytochrome c release. Initiation of the intra-mitochondrial autocleavage of procaspase-9 preceded the onset of caspase cascade induction in the cytosol. Purified mitochondria demonstrated procaspase-9 processing and releasing abilities when exposed to H(2)O(2).

View Article and Find Full Text PDF

p51/p63, a member of the p53 gene family, is structurally conserved among a wide range of organisms, although the transactivator (TA) and N-terminally truncated (deltaN) isotype producing property seems to vary. Since p51/p63 is thought to play important roles in skin, limb, and craniofacial development in mammals, we examined Xenopus laevis larval and adult tissues for expression of p51/p63. Temporal analyses indicated enhanced transcription of the deltaN form of p51/p63 in premetamorphosis phase (at stage 44-48).

View Article and Find Full Text PDF

Mitochondrial functional and structural impairment and generation of oxidative stress have been implicated in aging, various diseases and chemotherapies. This study analyzed azidothymidine (AZT)-caused failures in mitochondrial functions, in redox regulation and activation of the HIV-1 gene expression. We monitored intracellular concentrations of ATP and glutathione (GSH) as the indicators of energy production and redox conditions, respectively, during the time-course experiments with U937 and MOLT4 human lymphoid cells in the presence of AZT (0.

View Article and Find Full Text PDF

p51(p63), a member of the p53 tumor suppressor gene family, generates multiple isoforms, including the potent and less potent transactivators p51A(TAp63gamma) and p51B(TAp63alpha), respectively, the latter poorly characterized for its protein features and functions. When constitutively expressed in 1-2-3 mouse erythroleukemic cells, p51B(TAp63alpha) appeared as a broad band with an approximate molecular mass of 85 kDa in Western blot. When cells were exposed to genotoxic stress by UV-C irradiation or by DNA-damaging drugs, including actinomycin D, bleomycin, and eptoposide, the protein accumulated intracellularly without an increase in its mRNA.

View Article and Find Full Text PDF