Publications by authors named "Shun-Qiao Yao"

Seedlings of large-seeded plants are considered to be able to withstand abiotic stresses efficiently. The molecular mechanisms that underlie the involved signaling crosstalk between the large-seeded trait and abiotic tolerance are, however, largely unknown. Here, we demonstrate the molecular link that integrates plant abscisic acid (ABA) responses to drought stress into the regulation of seed mass.

View Article and Find Full Text PDF

The Arabidopsis AINTEGUMENTA (ANT) gene, which encodes an APETALA2 (AP2)-like transcription factor, controls plant organ cell number and organ size throughout shoot development. ANT is thus a key factor in the development of plant shoots. Here, we have found that ANT plays an essential role in conferring salt tolerance in Arabidopsis.

View Article and Find Full Text PDF

One goal of modern agriculture is the improvement of plant drought tolerance and water-use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms and engineered alternations of this relationship are not yet fully understood. Moreover, YODA (YDA), which is a MAPKK kinase gene, negatively regulates stomatal development.

View Article and Find Full Text PDF