Publications by authors named "Shun-Ming Ting"

Article Synopsis
  • Grem1 is a profibrogenic factor that affects the pancreatic ductal adenocarcinoma (PDAC) microenvironment by influencing cancer-associated fibroblasts and immune cells.
  • Grem1 levels correlate with an activated stroma and increased presence of macrophages in PDAC, with significant expression detected in pancreatic fibroblasts.
  • Targeting Grem1 may offer a new therapeutic approach for treating PDAC by altering the tumor microenvironment.
View Article and Find Full Text PDF

Background: Within hours after intracerebral hemorrhage (ICH) onset, masses of polymorphonuclear neutrophils (PMNs) infiltrate the ICH-affected brain. After degranulation involving controlled release of many toxic antimicrobial molecules, the PMNs undergo rapid apoptosis and then are removed by phagocytic microglia/macrophages (MΦ) through a process called efferocytosis. Effective removal of PMNs may limit secondary brain damage and inflammation; however, the molecular mechanisms governing these cleanup activities are not well understood.

View Article and Find Full Text PDF

The seven canonical members of transient receptor potential (TRPC) proteins form cation channels that evoke membrane depolarization and intracellular calcium concentration ([Ca] ) rise, which are not only important for regulating cell function but their deregulation can also lead to cell damage. Recent studies have implicated complex roles of TRPC channels in neurodegenerative diseases including ischemic stroke. Brain ischemia reduces oxygen and glucose supply to neurons, i.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is the deadliest form of stroke for which there is no effective treatment, despite an endless number of pre-clinical studies and clinical trials. The obvious therapeutic target is the neutralization of toxic products of red blood cell (RBC) lysis that lead to cytotoxicity, inflammation, and oxidative damage. We used rigorous approaches and translationally relevant experimental ICH models to show that lactoferrin-(LTF)-based monotherapy is uniquely robust in reducing brain damage after ICH.

View Article and Find Full Text PDF

Astrocytes are an integral component of the neurovascular unit where they act as homeostatic regulators, especially after brain injuries, such as stroke. One process by which astrocytes modulate homeostasis is the release of functional mitochondria (Mt) that are taken up by other cells to improve their function. However, the mechanisms underlying the beneficial effect of Mt transfer are unclear and likely multifactorial.

View Article and Find Full Text PDF

Background and Purpose- Phagocytic cells, such as microglia and blood-derived macrophages, are a key biological modality responsible for phagocytosis-mediated clearance of damaged, dead, or displaced cells that are compromised during senescence or pathological processes, including after stroke. This process of clearance is essential to eliminate the source of inflammation and to allow for optimal brain repair and functional recovery. Transcription factor, RXR (retinoic-X-receptor) is strongly implicated in phagocytic functions regulation, and as such could represent a novel target for brain recovery after stroke.

View Article and Find Full Text PDF

Purpose: Perihematomal edema (PHE) occurs in patients with intracerebral hemorrhage (ICH) and is often used as surrogate of secondary brain injury. PHE resolves over time, but little is known about the functional integrity of the tissues that recover from edema. In a pig ICH model, we aimed to assess metabolic integrity of perihematoma tissues by using non-invasive magnetic resonance spectroscopy (MRS).

View Article and Find Full Text PDF

Excitotoxicity and microglia/macrophage over-activation are the important pathogenic steps in brain damage caused by ischemic stroke. Recent studies from our group suggest that the neurons in ischemic penumbra generate an anti-inflammatory cytokine, interleukin-4 (IL-4). This neuron-produced IL-4 could subsequently convert surrounding microglia/macrophages to a reparative (M2)-phenotype.

View Article and Find Full Text PDF

Background And Purpose: Intracerebral hemorrhage (ICH) is a devastating disease with a 30-day mortality of ~50%. There are no effective therapies for ICH. ICH results in brain damage in 2 major ways: through the mechanical forces of extravasated blood and then through toxicity of the intraparenchymal blood components including hemoglobin/iron.

View Article and Find Full Text PDF

Iron released after intracerebral hemorrhage (ICH) is damaging to the brain. Measurement of the content and distribution of iron in the hematoma could predict brain damage. In this study, 16 Yorkshire piglets were subjected to autologous blood injection ICH model and studied longitudinally using quantitative susceptibility mapping and R2* relaxivity MRI on day 1 and 7 post-ICH.

View Article and Find Full Text PDF

Shortly after intracerebral hemorrhage, neutrophils infiltrate the intracerebral hemorrhage-injured brain. Once within the brain, neutrophils degranulate, releasing destructive molecules that may exacerbate brain damage. However, neutrophils also release beneficial molecules, including iron-scavenging lactoferrin that may limit hematoma/iron-mediated brain injury after intracerebral hemorrhage.

View Article and Find Full Text PDF

Clearance of dead brain tissue including the dead neurons through phagocytosis is an endogenous function of microglia in the brain, which is critical for inflammation resolution after ischemic stroke or head trauma. By regulating the function or polarization status of microglia, we may control their phagocytosis efficacy and therefore the cleanup process for the dead brain tissue. We cultured rat cortical neurons and microglia from the same litter of embryos.

View Article and Find Full Text PDF

Background And Purpose: Intracerebral hemorrhage (ICH) represents a devastating form of stroke for which there is no effective treatment. This preclinical study was designed to evaluate dimethyl fumarate (DMF), a substance recently approved for the treatment of multiple sclerosis, as therapy for ICH. We hypothesized that DMF through activating the master regulator of cellular self-defense responses, transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), would act as effective treatment for ICH-mediated damage.

View Article and Find Full Text PDF

As a consequence of intracerebral hemorrhage (ICH), blood components enter brain parenchyma causing progressive damage to the surrounding brain. Unless hematoma is cleared, the reservoirs of blood continue to inflict injury to neurovascular structures and blunt the brain repair processes. Microglia/macrophages (MMΦ) represent the primary phagocytic system that mediates the cleanup of hematoma.

View Article and Find Full Text PDF

Polymorphonuclear neutrophils (PMNs) infiltration into brain parenchyma after cerebrovascular accidents is viewed as a key component of secondary brain injury. Interestingly, a recent study of ischemic stroke suggests that after ischemic stroke, PMNs do not enter brain parenchyma and as such may cause no harm to the brain. Thus, the present study was designed to determine PMNs' behavior after intracerebral hemorrhage (ICH).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj6k2sdn15r69iserk3j7gtliulectiic): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once