Heat-resistant poly(l-lactide) (PLLA) barrier biocomposites with full biodegradability were realized through the construction of locally oriented and compact transcrystallinity supernetworks in the network of high-melting-point poly(l-lactide) (hPLLA) nonwoven fabrics composed of high-efficiency nucleating hPLLA fiber through design of two types of sandwich architectures for PLLA/hPLLA nonwoven fabrics, where single or double hPLLA nonwoven fabrics were introduced at the core or two sides of PLLA matrix film, respectively. The hPLLA fiber induced dense and oriented PLLA transcrystallinity in networks of hPLLA nonwoven fabrics and impermeable crystalline layers were formed with well-interlinked lamellae, which served as impermeable barriers to oxygen and water vapor molecules. Moreover, hPLLA nonwoven fabrics involving the compact transcrystallinity behaved as framework to support the PLLA matrix and resist the thermal deformation.
View Article and Find Full Text PDF