Due to their high catalytic activity, stability, and economic benefits, Pt-based multi-element alloyed nanoparticles (NPs) are considered promising electrodes for oxygen reduction reactions. However, a synthesis method capable of controlling the reduction reaction of elements with different redox potentials to synthesize multimetallic alloy NPs is yet to be developed. In this study, monodisperse NiPtPd alloy NPs with varying compositions were synthesized using 1-heptanol as a reducing solvent.
View Article and Find Full Text PDFRecycling food by-products as animal feed could decrease livestock production costs. We investigated how replacing conventional corn and wheat bran feed (control) with rice bran and soybean curd residue (RBSR) would influence lamb performance and meat quality. Eleven lambs were divided into the control and the RBSR-fed groups.
View Article and Find Full Text PDFControlling the shape of Pt-based nanomaterials is a major strategy to enhance the electrocatalytic performance towards the oxygen reduction reaction (ORR). Since the Pt (111) facet exhibits desirable electrochemical properties, Pt nanoplates enclosed by {111} facets are promising candidates. However, plate-shaped Pt crystals have thermodynamically unfavored structures, making syntheses challenging.
View Article and Find Full Text PDFCopper (Cu) nanowires (NWs) were synthesized by the reduction of Cu-chloride complexes using ascorbic acid (AA) as a mild reducing agent, polyvinylpyrrolidone (PVP) as a capping agent, and NaCl as an additive under atmospheric conditions at 80 °C. Surface analyses revealed that both Cl ions and PVP were required for the synthesis of Cu NWs. Together, the Cl ions and PVP capped the Cu (1 0 0) side faces, leading to anisotropic growth of Cu NWs along the [1 1 0] direction.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2018
Research to improve the dimensional properties of silver nanowires (Ag NWs) for transparent conductive film (TCF) applications are being carried out intensively. However, the protocol for the designed synthesis of high-quality Ag NWs is yet to be developed due to the inadequacy of knowledge on the role of parameters. Here, we attempt to elucidate the role played by the parameters and propose a monoalcohol-copolymer based system for the designed synthesis of Ag NWs superior in quality to the one synthesized using conventional ethylene glycol (EG)-polyvinylpyrrolidone (PVP) system.
View Article and Find Full Text PDFTo apply CuInSe₂ (CIS)-based printable solar batteries; an aqueous phase synthesis method of Cu-In (CI) alloy nanoparticles is studied. Metal complexes in the original solution are restricted to homogenized species by utilizing calculations. For example; [(Cu)(ASP)₂] [ASP: the "body (C₄H₅O₄N)" of aspartic acid (C₄H₇O₄N)] is predominant in the pH 6-13 region (C/C > 6); while In complexes can be restricted to [(In)(OH)(EDTA)] (pH 10-12; C/C = 2) and/or [(In)(ASP)₂] (pH 7-9; C/C = 5).
View Article and Find Full Text PDFThe properties of metal oxide nanocrystals can be tuned by incorporating mixtures of matrix metal elements, adding metal ion dopants, or constructing core/shell structures. However, high-temperature conditions required to synthesize these nanocrystals make it difficult to achieve the desired compositions, doping levels, and structural control. We present a lower temperature synthesis of ligand-stabilized metal oxide nanocrystals that produces crystalline, monodisperse nanocrystals at temperatures well below the thermal decomposition point of the precursors.
View Article and Find Full Text PDF