Here we report a surface morphology-induced spin state control in ultrathin films of a spin-crossover (SCO) material. The surface microstructure of film domains exhibited selectivity, to stabilize the SCO-active high-spin (HS) or SCO-inactive high-spin (HS2) states. To date, the latter has only been confirmed in the bulk counterpart at gigapascal pressure.
View Article and Find Full Text PDFThe spin-crossover phenomenon in nanomaterials has been the subject of exploratory investigations for stimuli-responsive switching properties at nanoscale. Using variable-temperature Raman spectroscopy, we investigated changes in the temperature-driven spin-transition property of {Fe(py)[Pt(CN)]} (py = pyridine) induced by a size reduction from a bulk polycrystalline powder to an ultrathin film (crystallite size, 15 nm). When the crystallite size was reduced, the spin-transition temperature shifted lower and the spin-transition curves became less steep.
View Article and Find Full Text PDFWe report the fabrication and characterization of the first example of a tetracyanonickelate-based two-dimensional-layered metal-organic framework, {Fe(py)Ni(CN)} (py = pyridine), thin film. To fabricate a nanometer-sized thin film, we utilized the layer-by-layer method, whereby a substrate was alternately soaked in solutions of the structural components. Surface X-ray studies revealed that the fabricated film was crystalline with well-controlled growth directions both parallel and perpendicular to the substrate.
View Article and Find Full Text PDFThe fabrication of porous coordination frameworks in thin-film forms has been investigated intensively with a view to using their structural response to external stimuli and guests for potential nanotechnological applications, for example as membranes for gas separation. Here we report a coordination framework that exhibits a dynamic guest-sorption behaviour in a nanometre-sized thin-film form (16 nm thick), yet shows no guest uptake in the bulk. Highly oriented crystalline thin films of this coordination framework--which consists of interdigitated two-dimensional layers of {Fe(py)2[Pt(CN)4]} (py, pyridine)--were fabricated through liquid-phase layer-by-layer synthesis.
View Article and Find Full Text PDFThe electrical properties of a highly oriented crystalline MOF nanofilm were studied. This nanofilm has low activation energy and a proton conductivity that is among the highest value reported for MOF materials. The study uncovered the reasons for the excellent performance of this nanofilm and revealed a new pathway for proton transport in MOF materials; besides the channels inside a MOF, the surface of the MOF nanocrystal can also dominate proton transport.
View Article and Find Full Text PDFThe preparation of crystalline, ordered thin films of metal-organic frameworks (MOFs) will be a critical process for MOF-based nanodevices in the future. MOF thin films with perfect orientation and excellent crystallinity were formed with novel nanosheet-structured components, Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin], by a new "modular assembly" strategy. The modular assembly process involves two steps: a "modularization" step is used to synthesize highly crystalline "modules" with a nanosized structure that can be conveniently assembled into a thin film in the following "assembly" step.
View Article and Find Full Text PDF