Publications by authors named "Shun Kitahata"

Development of selective or dual proteasome subunit inhibitors based on syringolin B as a scaffold is described. We focused our efforts on a structure-activity relationship study of inhibitors with various substituents at the 3-position of the macrolactam moiety of syringolin B analogue to evaluate whether this would be sufficient to confer subunit selectivity by using sets of analogues with hydrophobic, basic and acidic substituents, which were designed to target Met45, Glu53 and Arg45 embedded in the S1 subsite, respectively. The structure-activity relationship study using systematic analogues provided insight into the origin of the subunit-selective inhibitory activity.

View Article and Find Full Text PDF

A synthesis strategy for the production of a key synthetic intermediate of gulmirecin A was described. The key reaction in the preparation of the 12-membered macrolactone is the Ni(0)-mediated reductive cyclization reaction of ynal using an -heterocyclic carbene ligand and silane reductant. In addition, the α-selective glycosylation reaction of the macrolactone was performed to demonstrate the synthesis of gulmirecin and disciformycin precursors.

View Article and Find Full Text PDF

Proteasome inhibitors (PI), mainly targeting the β5 subunit of the 20S proteasome, are widely used in the treatment of multiple myeloma (MM). However, PI resistance remains an unresolved problem in the therapy of relapsed and refractory MM. To develop a new PI that targets other proteasome subunits, we examined the anti-MM activity of a novel syringolin analog, syringolog-1, which inhibits the activity of both the β5 and β2 subunits.

View Article and Find Full Text PDF

In this study, we designed and synthesized a structurally simplified syringolin A analogue 4, which could have a switched hydrogen bonding interaction with the β5 subunit of 20S proteasome. This analogue exhibits potent β5 proteasome inhibitory activity with an IC50 value of 107 nM. It also shows cytotoxicity against a range of human cancer cells at submicromolar level (109-254 nM).

View Article and Find Full Text PDF

Isosyringolin A, which is an isomer of the proteasome-inhibiting natural product syringolin A, was designed and synthesized to develop analogues that are step economical and synthetically accessible in a practical manner. It was revealed that isosyringolin A exhibited proteasome-inhibitory activity comparable to that of syringolin A and that its derivatization leads to great enhancement in its proteasome inhibitory activity as well as its cytotoxicity against human myeloma cells.

View Article and Find Full Text PDF