Publications by authors named "Shun Ikeda"

Mac-2 binding protein (Mac-2bp) is a serum glycoprotein that contains seven N-glycans, and Mac-2bp serum levels are increased in patients with several types of cancer and liver disease. Mac-2bp glycosylation isomer has been applied as a clinical biomarker of several diseases, including liver fibrosis. In the present study, we identified fucosylated Mac-2bp in the conditioned medium of cancer cells resistant to anticancer therapies using glycoproteomic analyses.

View Article and Find Full Text PDF

Serine/arginine-rich splicing factor 2 (SRSF2) is a member of the SR protein family that is involved in both constitutive and alternative mRNA splicing. Mutations in SRSF2 gene are frequently reported in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). It is imperative to understand how these mutations affect SRSF2-mediated splicing and cause MDS.

View Article and Find Full Text PDF

We previously found that the serum level of fucosylated haptoglobin (Fuc-Hpt) was significantly increased in pancreatic cancer patients. To delineate the mechanism underlying this increase and develop a simple detection method, we set out to generate a monoclonal antibody (mAb) specific for Fuc-Hpt. After multiple screenings by enzyme-linked immunosorbent assay (ELISA), a 10-7G mAb was identified as being highly specific for Fuc-Hpt generated in a cell line as well as for Hpt derived from a pancreatic cancer patient.

View Article and Find Full Text PDF

Objective: Uterine serous carcinoma (USC) is an aggressive type 2 endometrial cancer. Data on prognostic factors for patients with early-stage USC without adjuvant therapy are limited. This study aims to assess the baseline recurrence risk of early-stage USC patients without adjuvant treatment and to identify prognostic factors and patients who need adjuvant therapy.

View Article and Find Full Text PDF

Studies describing the effects of leukemia inhibitory factor (LIF) on adipocyte differentiation in murine cells have shown varying results. For example, LIF has been reported to have a suppressive effect on adipocyte differentiation in the 3T3-L1 cell line, whereas it promoted adipocyte differentiation in the Ob1771 and 3T3-F442A cell lines. Thus, it is possible that the effects of LIF on adipogenesis vary with the developmental stage of the cells or tissues, but the details remain unclear.

View Article and Find Full Text PDF

We recently developed a simple strategy for the enrichment of mesenchymal stem cells (MSCs) with the capacity for osteoblast, chondrocyte, and adipocyte differentiation. On transplantation, the progenitor-enriched fraction can regenerate bone with multiple lineages of donor origin. Although comprising multiple precursor cell types, the population is enriched >100-fold in osteoprogenitors, hence the name "highly purified osteoprogenitors" (HipOPs).

View Article and Find Full Text PDF

Progress in the "omics" fields such as genomics, transcriptomics, proteomics, and metabolomics has engendered a need for innovative analytical techniques to derive meaningful information from the ever increasing molecular data. KNApSAcK motorcycle DB is a popular database for enzymes related to secondary metabolic pathways in plants. One of the challenges in analyses of protein sequence data in such repositories is the standard notation of sequences as strings of alphabetical characters.

View Article and Find Full Text PDF

Leukemia inhibitory factor (LIF) is a pleiotropic cytokine that belongs to the interleukin-6 family and is expressed by multiple tissue types. This study analyzed the effect of LIF on osteoblast differentiation using primary murine bone marrow stromal cells (BMSCs). Colony-forming unit-osteoblast formation by BMSCs was significantly suppressed by LIF treatment.

View Article and Find Full Text PDF

Biology is increasingly becoming a data-intensive science with the recent progress of the omics fields, e.g. genomics, transcriptomics, proteomics and metabolomics.

View Article and Find Full Text PDF

We recently succeeded in purifying a novel multipotential progenitor or stem cell population from bone marrow stromal cells (BMSCs). This population exhibited a very high frequency of colony forming units-osteoblast (CFU-O; 100 times higher than in BMSCs) and high expression levels of osteoblast differentiation markers. Furthermore, large masses of mineralized tissue were observed in in vivo transplants with this new population, designated highly purified osteoprogenitors (HipOPs).

View Article and Find Full Text PDF

A database (DB) describing the relationships between species and their metabolites would be useful for metabolomics research, because it targets systematic analysis of enormous numbers of organic compounds with known or unknown structures in metabolomics. We constructed an extensive species-metabolite DB for plants, the KNApSAcK Core DB, which contains 101,500 species-metabolite relationships encompassing 20,741 species and 50,048 metabolites. We also developed a search engine within the KNApSAcK Core DB for use in metabolomics research, making it possible to search for metabolites based on an accurate mass, molecular formula, metabolite name or mass spectra in several ionization modes.

View Article and Find Full Text PDF

We identified the sequence-specific starting positions of consecutive miscalls in the mapping of reads obtained from the Illumina Genome Analyser (GA). Detailed analysis of the miscall pattern indicated that the underlying mechanism involves sequence-specific interference of the base elongation process during sequencing. The two major sequence patterns that trigger this sequence-specific error (SSE) are: (i) inverted repeats and (ii) GGC sequences.

View Article and Find Full Text PDF

Background: Recently, we identified cysteine-rich with EGF-like domains 2 (CRELD2) as a novel endoplasmic reticulum (ER) stress-inducible gene and characterized its transcriptional regulation by ATF6 under ER stress conditions. Interestingly, the CRELD2 and asparagine-linked glycosylation 12 homolog (ALG12) genes are arranged as a bidirectional (head-to-head) gene pair and are separated by less than 400 bp. In this study, we characterized the transcriptional regulation of the mouse CRELD2 and ALG12 genes that is mediated by a common bidirectional promoter.

View Article and Find Full Text PDF

Aberrant epithelial-mesenchymal transition (EMT) is involved in development of fibrotic disorders and cancer invasion. Alterations of cell-extracellular matrix interaction also contribute to those pathological conditions. However, the functional interplay between EMT and cell-extracellular matrix interactions remains poorly understood.

View Article and Find Full Text PDF

Recently, endoplasmic reticulum (ER) stress responses have been suggested to play important roles in maintaining various cellular functions and to underlie many tissue dysfunctions. In this study, we first identified cysteine-rich with EGF-like domains 2 (CRELD2) as an ER stress-inducible gene by analyzing a microarray analysis of thapsigargin (Tg)-inducible genes in Neuro2a cells. CRELD2 mRNA is also shown to be immediately induced by treatment with the ER stress-inducing reagents tunicamycin and brefeldin A.

View Article and Find Full Text PDF

Elevated expression of the protocadherin LKC (PCDH24) in HCT116 colon carcinoma cells has been shown to induce contact inhibition, thereby completely abolishing tumor formation in vivo (Carcinogenesis, 2002; 23(7):1139-1148). To clarify the molecular mechanism behind this effect, we performed 2-DE/MS and DNA microarray analyses in order to compare protein and gene expression patterns of parental HCT116 and PCDH24-expressing HTC116 derivative cells. The data revealed drastic changes in phenotypic markers between parental and PCDH24-expressing cells.

View Article and Find Full Text PDF

The SMARCAD1/KIAA1122 protein is structurally classified into the SWI2/SNF2 superfamily of DNA-dependent ATPases that are catalytic subunits of chromatin-remodeling complexes. Although the importance of other members of the SWR1-like subfamily in chromatin remodeling (EP400, INOC1, and SRCAP) has already been elucidated, the biological function of SMARCAD1/KIAA1122 in transcriptional regulation remains to be clarified. To gain insight into the role of this protein, we generated a specific antibody against SMARCAD1/KIAA1122 and used it for chromatin and protein immunoprecipitation assays.

View Article and Find Full Text PDF