Publications by authors named "Shun Ichii"

A palladium NNC-pincer complex at a 5 mol ppm loading efficiently catalyzed the Hiyama coupling reaction of aryl bromides with aryl(trialkoxy)silanes in propylene glycol to give the corresponding biaryls in excellent yields. This method was applied to the syntheses of adapalene and a biaryl-type liquid-crystalline compound, as well as to the derivatization of dextromethorphan and norfloxacin. ESI-MS and NMR analyses of the reaction mixture suggested the formation of pentacoordinate spirosilicate intermediates in situ.

View Article and Find Full Text PDF

Multifunctional catalysts are of great interest in catalysis because their multiple types of catalytic or functional groups can cooperatively promote catalytic transformations better than their constituents do individually. Herein we report a new synthetic route involving the surface functionalization of nanoporous silica with a rationally designed and synthesized dihydrosilane (3-aminopropylmethylsilane) that leads to the introduction of catalytically active grafted organoamine as well as single metal atoms and ultrasmall Pd or Ag-doped Pd nanoparticles via on-site reduction of metal ions. The resulting nanomaterials serve as highly effective bifunctional dehydrogenative catalysts for generation of H from formic acid.

View Article and Find Full Text PDF

Inspired by homogeneous borane catalysts that promote Si-H bond activation, we herein describe an innovative method for surface modification of silica using hydrosilanes as the modification precursor and tris(pentafluorophenyl)borane (B(C6F5)3) as the catalyst. Since the surface modification reaction between surface silanol and hydrosilane is dehydrogenative, progress and termination of the reaction can easily be confirmed by the naked eye. This new metal-free process can be performed at room temperature and requires less than 5 min to complete.

View Article and Find Full Text PDF