Publications by authors named "Shun Hosoyamada"

Secreted acid phosphatases (APases) dephosphorylate extracellular organic phosphate compounds to supply inorganic phosphate (Pi) to maintain cellular functions. Here, we show that APases are necessary to maintain a normal replicative lifespan in Saccharomyces cerevisiae. Deletion of all four APase genes shortened the lifespan in yeast strains on synthetic media (irrespective of the concentrations of Pi in the media), but it did not affect the intracellular ortho- and polyphosphate levels.

View Article and Find Full Text PDF

Nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase elicits nucleophagy degrading nucleolar proteins in budding yeast. After TORC1 inactivation, nucleolar proteins are relocated to sites proximal to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas ribosomal DNA (rDNA encoding rRNA) escapes from the NVJ. Condensin-mediated rDNA condensation promotes the repositioning and nucleophagic degradation of nucleolar proteins.

View Article and Find Full Text PDF

The rRNA genes (rDNA) in eukaryotes are organized into highly repetitive gene clusters. Each organism maintains a particular number of copies, suggesting that the rDNA is actively stabilized. We previously identified about 700 genes that could contribute to rDNA maintenance.

View Article and Find Full Text PDF

Nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase induce nucleophagy preferentially degrading only nucleolar components in budding yeast. Nucleolar proteins are relocated to sites proximal to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas rDNA, which is embedded in the nucleolus under normal conditions, moves to NVJ-distal regions, causing rDNA dissociation from nucleolar proteins after TORC1 inactivation. This repositioning is mediated via chromosome linkage INM protein (CLIP)-cohibin complexes that tether rDNA to the inner nuclear membrane.

View Article and Find Full Text PDF

Nutrient starvation or inactivation of target of rapamycin complex 1 (TORC1) in budding yeast induces nucleophagy, a selective autophagy process that preferentially degrades nucleolar components. DNA, including ribosomal DNA (rDNA), is not degraded by nucleophagy, even though rDNA is embedded in the nucleolus. Here, we show that TORC1 inactivation promotes relocalization of nucleolar proteins and rDNA to different sites.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5vu13rh8k6khbncli64dshagkjkbmqr1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once