Dysregulated motivation to consume psychoactive substances leads to addictive behaviors that often result in serious health consequences. Understanding the neuronal mechanisms that drive drug consumption is crucial for developing new therapeutic strategies. The fruit fly Drosophila melanogaster offers a unique opportunity to approach this problem with a battery of sophisticated neurogenetic tools available, but how they consume these drugs remains largely unknown.
View Article and Find Full Text PDFIn , dopamine signaling to the mushroom body intrinsic neurons, Kenyon cells (KCs), is critical to stabilize olfactory memory. Little is known about the downstream intracellular molecular signaling underlying memory stabilization. Here we address this question in the context of sugar-rewarded olfactory long-term memory (LTM).
View Article and Find Full Text PDFNeurotransmitters often have multiple receptors that induce distinct responses in receiving cells. Expression and localization of neurotransmitter receptors in individual neurons are therefore critical for understanding the operation of neural circuits. Here we describe a comprehensive library of reporter strains in which a convertible T2A-GAL4 cassette is inserted into endogenous neurotransmitter receptor genes of Drosophila.
View Article and Find Full Text PDF