Publications by authors named "Shun Hashiyada"

Chiral molecules, a cornerstone of chemical sciences with applications ranging from pharmaceuticals to molecular electronics, come in mirror-image pairs called enantiomers. However, their synthesis often requires complex control of their molecular geometry. We propose a strategy called "electromagnetic enantiomers" for inducing chirality in molecules located within engineered nanocavities using light, eliminating the need for intricate molecular design.

View Article and Find Full Text PDF

Helical dichroism (HD), which is defined as the difference in optical absorption between chiral pairs of lights involving left-handed (LH) and right-handed (RH) optical vortices (OVs) carrying orbital angular momentum (OAM), is a promising way to characterize chiral materials. In the current major methods of OV generation using spatial light modulators (SLMs), the speed of OAM switching is typically as slow as 100 Hz, which is comparable to low-frequency noise, making precise chiral detection difficult. Here, we theoretically propose and experimentally demonstrate a rapid modulation of the LH and RH OVs at around 50 kHz.

View Article and Find Full Text PDF

Circular dichroism (CD) spectra for pseudo-two-dimensional chiral nanomaterials were systematically investigated and analyzed in relation to the rotational symmetry of the nanomaterials. Theoretically, an ideal two-dimensional chiral matter is CD inactive for light incident normal to the plane if it possesses threefold or higher rotational symmetry. If the matter has two- or onefold rotational symmetry, it should exhibit CD activity, and the CD signal measured from the back side of the matter is expected to be inverted from that measured from the front side.

View Article and Find Full Text PDF

Nanophotonic platforms in theory uniquely enable < femtomoles of chiral biological and pharmaceutical molecules to be detected, through the highly localized changes in the chiral asymmetries of the near fields that they induce. However, current chiral nanophotonic based strategies are intrinsically limited because they rely on far field optical measurements that are sensitive to a much larger near field volume, than that influenced by the chiral molecules. Consequently, they depend on detecting small changes in far field optical response restricting detection sensitivities.

View Article and Find Full Text PDF

When a chiral nanoparticle is optically trapped using a circularly polarized laser beam, a circular polarization (CP)-dependent gradient force can be induced on the particle. We investigated the CP-dependent gradient force exerted on three-dimensional chiral nanoparticles. The experimental results showed that the gradient force depended on the handedness of the CP of the trapping light and the particle chirality.

View Article and Find Full Text PDF

An optical vortex with orbital angular momentum (OAM) can be used to induce microscale chiral structures in various materials. Such chiral structures enable the generation of a nearfield vortex, i.e.

View Article and Find Full Text PDF

Chiral nanostructures show macroscopic optical activity. Local optical activity and its handedness are not uniform in the nanostructure, and are spatially distributed depending on the shape of the nanostructure. In this study we fabricated curved chain nanostructures made of gold by connecting linearly two or more arc structures in a two-dimensional plane.

View Article and Find Full Text PDF