Utilizing molecular motion is essential for the use of anhydrous superprotonic molecular proton conductors (σ beyond 10 S cm ) as electrolytes in hydrogen fuel cells. However, molecular motion contributing to the improvement of intrinsic proton conduction has been limited and little clarified in relation to the proton conduction mechanism, limiting the development of material design guidelines. Here, a salt with a three-dimensional (3D) hydrogen-bonded (H-bonded) phosphate network with imidazolium cations installed inside was studied, whose components are known to exhibit molecular motions that contribute to proton conduction.
View Article and Find Full Text PDFProton-electron-coupled reactions, specifically proton-coupled electron transfer (PCET), in biological and chemical processes have been extensively investigated for use in a wide variety of applications, including energy conversion and storage. However, the exploration of the functionalities of the conductivity, magnetism, and dielectrics by proton-electron coupling in molecular materials is challenging. Dynamic and static proton-electron-coupled functionalities are to be expected.
View Article and Find Full Text PDFThe conjugation length is a unique structural factor for oligomer-based π-conjugated conductors as it modulates their electronic structures. Herein, we demonstrated the conjugation length effects on conductivity by comparing a dimer and trimer of single-crystalline oligo(3,4-ethylenedioxythiophene) radical cation salts. The dimer showed a uniform-stacked columnar structure, while the trimer showed stacked columns of the π-dimerized donor and weaker intracolumnar interactions.
View Article and Find Full Text PDFFerroelectric spin crossover (SCO) behavior is demonstrated to occur in the cobalt(II) complex, [Co(FPh-terpy) ](BPh ) ⋅3ac (1⋅3 ac; FPh-terpy=4'-((3-fluorophenyl)ethynyl)-2,2':6',2''-terpyridine) and is dependent on the degree of 180° flip-flop motion of the ligand's polar fluorophenyl ring. Single crystal X-ray structures at several temperatures confirmed the flip-flop motion of fluorobenzene ring and also gave evidence for the SCO behavior with the latter behavior also confirmed by magnetic susceptibility measurements. The molecular motion of the fluorobenzene ring was also revealed using solid-state F NMR spectroscopy.
View Article and Find Full Text PDFInvited for the cover of this issue is the group of Tomoko Fujino and Hatsumi Mori at the University of Tokyo. The image depicts the structural information of doped PEDOT uncovered by the single-crystalline EDOT dimer model. Read the full text of the article at .
View Article and Find Full Text PDFAlthough doped poly(3,4-ethylenedioxythiophene) (PEDOT) is extensively used in electronic devices, their molecular-weight distributions and inadequately defined structures have hindered the elucidation of their underlying conduction mechanism. In this study, we introduce the simplest discrete oligomer models: EDOT dimer radical cation salts. Single-crystal structural analyses revealed their one-dimensional (1D) columnar structures, in which the donors were uniformly stacked.
View Article and Find Full Text PDFWater confined within one-dimensional (1D) hydrophobic nanochannels has attracted significant interest due to its unusual structure and dynamic properties. As a representative system, water-filled carbon nanotubes (CNTs) are generally studied, but direct observation of the crystal structure and proton transport is difficult for CNTs due to their poor crystallinity and high electron conduction. Here, we report the direct observation of a unique water-cluster structure and high proton conduction realized in a metal-organic nanotube, [Pt(dach)(bpy)Br](SO)·32HO (dach: (1R, 2R)-(-)-1,2-diaminocyclohexane; bpy: 4,4'-bipyridine).
View Article and Find Full Text PDFWe investigated the relationship between crystalline disorder and electronic structure deviations of Pd nanoparticles (NPs) and their hydrogen storage properties as a function of their particle diameter (2.0, 4.6 and 7.
View Article and Find Full Text PDFOne of the key issues for an upcoming hydrogen energy-based society is to develop highly efficient hydrogen-storage materials. Among the many hydrogen-storage materials reported, transition-metal hydrides can reversibly absorb and desorb hydrogen, and have thus attracted much interest from fundamental science to applications. In particular, the Pd-H system is a simple and classical metal-hydrogen system, providing a platform suitable for a thorough understanding of ways of controlling the hydrogen-storage properties of materials.
View Article and Find Full Text PDFWe report a hybrid solid system, UMOM-100-a and UMOM-100-b, synthesized by incorporation of Cu-based metal-organic polyhedra (MOPs) into a porous metal-organic framework (MOF) host, PCN-777. The MOP guests have acid (SO) functional groups, acting as functionalized nanocages, whereas the porosity is still maintained for proton conductivity. The key parameter for the UMOM-100 series is the number of MOPs inside a MOF, which controls the ratio between meso- and micropores, polarity, and finally proton conductivity.
View Article and Find Full Text PDFThe palladium-hydrogen system is one of the most famous hydrogen-storage systems. Although there has been much research on β-phase PdH(D) , we comprehensively investigated the nature of the interaction between Pd and H(D) in α-phase PdH(D) (x<0.03 at 303 K), and revealed the existence of Pd-H(D) chemical bond for the first time, by various in situ experimental techniques and first-principles theoretical calculations.
View Article and Find Full Text PDFThe synthesis of a new ionic plastic crystal, tetraethylammonium-d d-10-camphorsulfonate, is reported. The crystal has three solid phases, the structures of which were determined by single-crystal X-ray diffraction (XRD). XRD analysis revealed a phase transition from nonpolar space group P222 to polar space group P2 with increasing temperature.
View Article and Find Full Text PDFUnderstanding the role that crystal imperfections or defects play on the physical properties of a solid material is important for any application. In this report, the highly unique crystal structure of the metal-organic framework (MOF) zirconium 2-sulfoterephthalate is presented. This MOF contains a large number of partially occupied ligand and metal cluster sites which directly affect the physical properties of the material.
View Article and Find Full Text PDFPd octahedrons and cubes enclosed by {111} and {100} facets, respectively, have been synthesized for investigation of the shape effect on hydrogen-absorption properties. Hydrogen-storage properties were investigated using in situ powder X-ray diffraction, in situ solid-state (2)H NMR and hydrogen pressure-composition isotherm measurements. With these measurements, it was found that the exposed facets do not affect hydrogen-storage capacity; however, they significantly affect the absorption speed, with octahedral nanocrystals showing the faster response.
View Article and Find Full Text PDF