Publications by authors named "Shumpei Morita"

Unlabelled: Calcium level variations, which occur downstream of T cell receptor (TCR) signaling, are an essential aspect of T cell antigen recognition. Although coordinated ion channel activities are known to drive calcium oscillations in other cell types, observations of nonperiodic and heterogeneous calcium patterns in T cells are inconsistent with this mechanism. Here, we track the complete ensemble of individual molecular peptide-major histocompatibility complex (pMHC) binding events to TCR, while simultaneously imaging LAT condensation events and calcium level.

View Article and Find Full Text PDF
Article Synopsis
  • Echinoderms can produce functional gametes throughout their long lifespan, making the study of their ovaries significant for understanding reproductive biology.
  • This research presents the first single-cell RNA sequencing data of mature ovaries from two sea urchin species and one sea star species, revealing various cell states in each species.
  • The findings help identify key genes linked to cell clusters, providing insight into stem cells responsible for gamete production and aiding in the understanding of reproductive evolution in echinoderms.
View Article and Find Full Text PDF

The T cell receptor (TCR) is a complex molecular machine that directs the activation of T cells, allowing the immune system to fight pathogens and cancer cells. Despite decades of investigation, the molecular mechanism of TCR activation is still controversial. One of the leading activation hypotheses is the allosteric model.

View Article and Find Full Text PDF

Evolutionary transitions are particularly important in development of the germ line, cells which directly impact sexual reproduction. Differences in the primordial germ cells (PGCs) of two sea urchin species were examined here by stage-matched, integrated, single cell RNA-seq (scRNA-seq) datasets. Even though both species rely on inherited mechanisms to specify their germ line, this analysis revealed a variety of differences in germline gene expression, including a broader expression of the germline factor () in () compared to ().

View Article and Find Full Text PDF

LAT assembly into a two-dimensional protein condensate is a prominent feature of antigen discrimination by T cells. Here, we use single-molecule imaging techniques to resolve the spatial position and temporal duration of each pMHC:TCR molecular binding event while simultaneously monitoring LAT condensation at the membrane. An individual binding event is sufficient to trigger a LAT condensate, which is self-limiting, and neither its size nor lifetime is correlated with the duration of the originating pMHC:TCR binding event.

View Article and Find Full Text PDF

Echinoderms are a major model system for many general aspects of biology, including mechanisms of gene regulation. Analysis of transcriptional regulation (Gene regulatory networks, direct DNA-binding of proteins to specific cis-elements, and transgenesis) has contributed to our understanding of how an embryo works. This chapter looks at post-transcriptional gene regulation in the context of how the primordial germ cells are formed, and how the factors essential for this process are regulated.

View Article and Find Full Text PDF

Brachyury is a T-box family transcription factor and plays pivotal roles in morphogenesis. In sea urchin embryos, Brachyury is expressed in the invaginating endoderm, and in the oral ectoderm of the invaginating mouth opening. The oral ectoderm is hypothesized to serve as a signaling center for oral (ventral)-aboral (dorsal) axis formation and to function as a ventral organizer.

View Article and Find Full Text PDF

Under physiological conditions, peptide-major histocompatibility complex (pMHC) molecules can trigger T cell receptors (TCRs) as monovalent ligands that are sparsely distributed on the plasma membrane of an antigen-presenting cell. TCRs can also be triggered by artificial clustering, such as with pMHC tetramers or antibodies; however, these strategies circumvent many of the natural ligand discrimination mechanisms of the T cell and can elicit nonphysiological signaling activity. We have recently introduced a synthetic TCR agonist composed of an anti-TCRβ Fab' antibody fragment covalently bound to a DNA oligonucleotide, which serves as a membrane anchor.

View Article and Find Full Text PDF

Dosage compensation is a mechanism that equalizes sex chromosome gene expression between the sexes. In Drosophila, individuals with two X chromosomes (XX) become female, whereas males have one X chromosome (XY). In males, dosage compensation of the X chromosome in the soma is achieved by five proteins and two non-coding RNAs, which assemble into the male-specific lethal (MSL) complex to upregulate X-linked genes twofold.

View Article and Find Full Text PDF

The germline is unique and immortal (or at least its genome is). It is able to perform unique jobs (meiosis) and is selected for genetic changes. Part of being this special also means that entry into the germline club is restricted and cells of the soma are always left out.

View Article and Find Full Text PDF

Cell-cycle quiescence is a common feature of early germline development in many animal species. In Drosophila germline progenitors (pole cells), both G2/M and G1/S transitions are blocked. G2/M transition is repressed by maternal Nanos through suppression of Cyclin B production.

View Article and Find Full Text PDF

In Drosophila ovary, germline stem cells (GSCs) divide to produce two daughter cells. One daughter is maintained as a GSC, whereas the other initiates cyst formation, a process involving four synchronous mitotic divisions that form 2-, 4-, 8-, and 16-cell cysts. In this study, we found that reduction in the level of NHP2, a component of the H/ACA small nucleolar ribonucleoprotein complex that catalyzes rRNA pseudouridylation, promotes progression to 8-cell cysts.

View Article and Find Full Text PDF

In Drosophila, Sex lethal (Sxl), an RNA binding protein, is required for induction of female sexual identity in both somatic and germline cells. Although the Sxl-dependent feminizing pathway in the soma was previously elucidated, the downstream targets for Sxl in the germline remained elusive. To identify these target genes, we selected transcripts associated with Sxl in primordial germ cells (PGCs) of embryos using RNA immunoprecipitation coupled to sequencing (RIP-seq) analysis.

View Article and Find Full Text PDF