Objective: Sympathetic nervous system activity (SNSA) can rapidly modulate arterial stiffness, thus making it an important biomarker for SNSA evaluation. Pulse wave velocity (PWV) is a well-known quantitative indicator of arterial stiffness, but its functional responsivity to SNSA has not been elucidated. This paper reports a method to estimate rapid changes in peripheral arterial stiffness induced by SNSA using local PWV (LPWV) and to further quantify SNSA based on the estimated stiffness.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
In this paper, we aimed to develop a method for the automatic recognition of individual finger-tapping motion. Biodegradable piezoelectric film sensors were attached to the skin of a forearm near the wrist (16 channels) to measure small movements of the tendons during five-finger tapping. In the proposed method, the segments in which motion occurred were detected by calculating the total activity for all channels.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
This study investigates the relationship between respiration and autonomic nervous system (ANS) activity and proposes a parallel detection method that can simultaneously extract the heart rate (HR) and respiration rate (RR) from different pulse waves measured using a novel biodegradable piezoelectric sensor. The synchronous changes in heart rate variability and respiration reveal the interaction between respiration and the cardiovascular system and their interconnection with ANS activity. Following this principle, respiration was extracted from the HR calculated beat-by-beat from pulse waves.
View Article and Find Full Text PDF