Lumpy skin disease (LSD) is an emerging transboundary and highly infectious viral disease mainly affecting cattle. The fact that it was initially confined to Africa and then spread beyond its geographical range to other regions, including the Middle East, Turkey, Europe, the Balkans, Russia and Asia, is an indication of the underestimation and neglect of this disease. Vaccination is considered the most effective way to control the spread of LSDV, when combined with other control measures.
View Article and Find Full Text PDFLumpy skin disease (LSD) is a transboundary viral infection, affecting cattle with characteristic manifestations involving multiple body systems. A distinctive characteristic of lumpy skin disease is the subclinical disease manifestation wherein animals have viremia and shed the virus through nasal and ocular discharges, while exhibiting no nodules but enlarged lymph nodes that are easily oversighted by inexperienced vets. Further research on the role of subclinically ill animals in the transmission of LSD virus (LSDV) can contribute to the development of more effective tools to control the disease worldwide.
View Article and Find Full Text PDFPeste des petits ruminants (PPR) is a transboundary viral disease that affects small ruminants, such as goats and sheep, in Africa, the Middle East, and Asia, causing substantial damage to livelihoods and disrupting livestock trade. Although Russia is PPR virus (PPRV)-free, controlling PPRV in neighboring countries is the top national priority. Recent PPR outbreaks in Mongolia and other countries in the Middle East caused by a lineage IV virus represent a risk of transboundary emergence in neighboring countries, including China, Kazakhstan, and Russia.
View Article and Find Full Text PDFThe pathology caused by three different isolates of lumpy skin disease virus, classical field cluster 1.2 strain Dagestan/2015, recombinant vaccine-like cluster 2.1 strain Saratov/2017, and cluster 2.
View Article and Find Full Text PDFLumpy skin disease (LSD) caused by LSD virus (LSDV), is a member of the poxvirus genus . It is classified as a notifiable disease by the World Organization for Animal Health (WOAH) based on its potential for rapid spread and global economic impact. Due to these characteristics, the mode of LSDV transmission has prompted intensive research efforts.
View Article and Find Full Text PDFSince 1989, lumpy skin disease of cattle (LSD) has spread out of Africa via the Middle East northwards and eastwards into Russia, the Far East and South-East Asia. It is now threatening to become a worldwide pandemic, with Australia possibly next in its path. One of the research gaps on the disease concerns its main mode of transmission, most likely via flying insect vectors such as biting flies or mosquitoes.
View Article and Find Full Text PDFBackground: Since the first description of lumpy skin disease virus (LSDV) in Africa in the 1920's, it has brazenly spread beyond Africa into the Middle East, Europe and most recently Asia. In 2017 the first atypical LSDV recombinant strain was reported in Russia, composed of both a live-attenuated Neethling vaccine strain and Kenyan vaccine strain. An increase in LSDV research enabled a public release of numerous full genome sequences of unique recombinant LSDV strains from Kazakhstan, Russia, China and Vietnam.
View Article and Find Full Text PDFLumpy skin disease virus causes a debilitating pox disease of domesticated cattle and water buffalos. In the last decade, LSDV has spread from Africa into the Middle East, Europe and most recently Asia. As of 2017, atypical outbreaks caused by novel LSDV strains were reported in Russia, followed by China and Vietnam between 2018 and 2020.
View Article and Find Full Text PDFLumpy skin disease is an emerging transboundary infection demonstrating a great range expansion worldwide recently. With many knowledge gaps, there is a lack of understanding how lumpy skin disease virus (LSDV), including naturally occurring vaccine-like LSDV, is capable of surviving under different climatic conditions. In this study, we describe a recombinant vaccine-like LSDV from an outbreak in Saratov region of Russia in 2019, where the first recombinant Saratov/2017 was documented.
View Article and Find Full Text PDFResearch into the phylogenetic relationships of lumpy skin disease virus (LSDV) strains was long overlooked, partially due to its original restricted distribution to sub-Saharan Africa. However, recent incursions into northern latitudes, and a rapid spread causing major economic losses worldwide, have intensified additional research on the disease and the causative virus. This study delineates the phylogeny of LSDV in the context of full genome sequences of strains recovered in the field, as well as strains highly passaged in cell culture.
View Article and Find Full Text PDFThe use of live homologous vaccines to protect against lumpy skin disease virus (LSDV) infection requires the use of molecular tools to differentiate between infected and vaccinated animals (DIVA). In this study, the commercial real-time PCR assays; ID Gene™ LSD DIVA Triplex kit and Bio-T kit LSD - DIVA, as well as published assays targeting the GPCR gene (Journal of Virological Methods, 249, 48-57) and ORF008 and ORF126 (Sel'skokhozyaistvennaya Biologiya, 54, 347-358) were evaluated. These assays correctly identified classical field isolates (European lineage) and vaccine (Neethling vaccine).
View Article and Find Full Text PDFGenomic changes by recombination have been recently observed in lumpy skin disease viruses circulating in Russia. The first characterized naturally occurring recombinant lumpy skin disease virus Saratov/2017 occurred through recombination between a live attenuated virus vaccine and the Southern African lumpy skin disease virus. Understanding if recombination can increase or decrease virulence of viruses through changes in different gene regions is required to improve the understanding of capripoxvirus biology.
View Article and Find Full Text PDFAn uncharacteristic outbreak of lumpy skin disease was reported in the Republic of Udmurtiya, Russia, during the climatic winter of March 2019. The causative lumpy skin disease virus (LSDV_Udmurtiya_Russia_2019) was shown to be a recombinant composed of a live attenuated Neethling-type vaccine strain as the dominant parental strain and a Kenyan KSGP/NI-2490-like virus as its minor parental strain, with 24 statistically significant recombination events that are not identical to those in LSDV Saratov/2017, in which 27 events were identified.
View Article and Find Full Text PDFLumpy skin disease (LSD) has recently expanded its range northwards to include the Balkans, Turkey and Russia. Because there was no solid evidence conclusively verifying the transmission mechanism in the field and LSDV viraemic animals with overt and asymptomatic presentation of disease and their products may represent a risk as an indirect transmission pathway. In this work, we used PCR positivity and infectivity in clinical and subclinical infection to evaluate the safety of meat and offal products from cows infected with the virulent LSDV strain Russia/Dagestan/2015.
View Article and Find Full Text PDFEffects of anesthesia and surgery on the level of cyclic nucleotides (CN) and their role in the formation of pathological reactions are little studied. We measured plasma concentrations of CN for evaluating the quantitative and qualitative changes in adenylate-guanylate cyclase metabolism under the effect of operation and for elucidating the role of these changes in postoperative disorders of hemodynamics and gas exchange. The findings in patients with surgical diseases of the lungs (168 pts), with acquired and congenital heart diseases (193 pts), and with atherosclerotic involvement of the aorta (63 pts) were analyzed.
View Article and Find Full Text PDFHumoral mechanisms of pain caused by different factors vary. The authors compare blood concentrations of "painful substances" in experimental dogs and in patients suffering from postoperative pain relieved by electroacupuncture for assessing the role of these substances: serotonin, histamine, prostaglandin F2 alpha (PGF), and neuropeptides beta-endorphine, methionine- and leucine-enkephalines. Serotonin, histamine, and PGF participated in the nociception process in an equal measure both in dogs and humans.
View Article and Find Full Text PDFThe concentrations of endogenous opiates (beta-endorphin, methionine-enkephalin, leucine-enkephalin) in the spinal fluid and arterial blood plasma has been studied in 16 dogs, using the model of acute pain stimulation under electroacupuncture analgesia (EAA). It has been shown that pain stimulation under EAA is accompanied by a significant increase in methionine-enkephalin++ and leucine-enkephalin concentrations (by 244 and 69.4%, respectively) in the spinal fluid.
View Article and Find Full Text PDF