In many bilaterians, Hox genes are generally clustered along the chromosomes and expressed in spatial and temporal order. In vertebrates, the expression of Hox genes follows a whole-cluster spatio-temporal collinearity (WSTC) pattern, whereas in some invertebrates the expression of Hox genes exhibits a subcluster-level spatio-temporal collinearity pattern. In bilaterians, the diversity of collinearity patterns and the cause of collinearity differences in Hox gene expression remain poorly understood.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
April 2022
Larval attachment and metamorphosis are important processes during the development of some marine invertebrates. Myoinhibitory peptides (MIPs), a class of small molecular neuropeptides, have been revealed to be involved in regulating the larval settlement. In this paper, we identified two types of MIP membrane receptors, G-protein coupled receptor SPR and MIP-gated ion channel receptors MGIC1 and MGIC2 based on sequence homology with other species in the transcriptome database of Echiuroidea Urechis unicinctus (Xenopneusta, Urechidae).
View Article and Find Full Text PDFThe intertidal zone is a transitional area of the land-sea continuum, in which physical and chemical properties vary during the tidal cycle and highly toxic sulfides are rich in sediments due to the dynamic regimes. As a typical species thriving in this habitat, presents strong sulfide tolerance and is expected to be a model species for sulfide stress research. Heat shock proteins (HSPs) consist of a large group of highly conserved molecular chaperones, which play important roles in stress responses.
View Article and Find Full Text PDFBackground: In marine invertebrate life cycles, which often consist of planktonic larval and benthonic adult stages, settlement of the free-swimming larva to the sea floor in response to environmental cues is a key life cycle transition. Settlement is regulated by a specialized sensory-neurosecretory system, the larval apical organ. The neuroendocrine mechanisms through which the apical organ transduces environmental cues into behavioral responses during settlement are not fully understood yet.
View Article and Find Full Text PDF