Publications by authors named "Shumei Zhou"

Plant viruses rely on host factors for successful infection. Non-specific lipid transfer proteins (nsLTPs) play critical roles in plant-pathogen interactions; however, their functions and underlying molecular mechanisms in viral infections remain largely unknown. Jasmonic acid (JA) is a crucial regulatory hormone in the process of plant resistance to viral infection.

View Article and Find Full Text PDF

Late blight, caused by , is one of the most serious diseases affecting potatoes ( L.). Long non-coding RNAs (lncRNAs) are transcripts with a length of more than 200 nucleotides that have no protein-coding potential.

View Article and Find Full Text PDF

For the first time it is reported that members of the nsLTP protein family could promote viral infection by inhibiting virus-induced RNA silencing. Non-specific lipid transfer proteins (nsLTPs) are a class of soluble proteins with low relative molecular weight and widely present in higher plants. The role of nsLTPs in biotic and abiotic stresses has been studied, but no report has shown that nsLTPs play a role in the process of viral infection.

View Article and Find Full Text PDF

Long non-coding RNA (lncRNA) is a crucial regulatory mechanism in the plant response to biotic and abiotic stress. However, their roles in potato ( L.) resistance to () largely remain unknown.

View Article and Find Full Text PDF

Nonspecific lipidtransfer proteins (nsLTPs), which are small, cysteine-rich proteins, belong to the pathogenesis-related protein family, and several of them act as positive regulators during plant disease resistance. However, the underlying molecular mechanisms of these proteins in plant immune responses are unclear. In this study, a typical nsLTP gene, StLTP10, was identified and functionally analysed in potato.

View Article and Find Full Text PDF

Specific and common genes including transcription factors, resistance genes and pathways were significantly induced in potato by Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y infection. The three major pathogens, namely, Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y, can cause late blight, bacterial wilt, and necrotic ringspot, respectively, and thus severely reduce the yield and quality of potatoes (Solanum tuberosum L.).

View Article and Find Full Text PDF

In plants, viral replication can be inhibited through gene silencing, which is mediated by short interfering RNA (siRNA) or microRNA (miRNA). However, under natural conditions, viruses are extremely susceptible to mutations that may decrease the efficiency of cleavage of these small RNAs (sRNAs). Therefore, a single sRNA may not provide a sufficient degree of viral resistance to transgenic plants.

View Article and Find Full Text PDF

Lipid transfer proteins (LTPs), a class of small, ubiquitous proteins, play critical roles in various environmental stresses. However, their precise biological functions remain unknown. Here we isolated an extracellular matrix-localised LTP, NtLTP4, from Nicotiana tabacum.

View Article and Find Full Text PDF

High salinity is one of the most severe environmental stresses and limits the growth and yield of diverse crop plants. We isolated a gene named TaPUB1 from wheat (Triticum aestivum L. cv HF9703) that encodes a novel protein containing a U-box domain, the precursor RNA processing 19p (Prp19) superfamily and WD-40 repeats.

View Article and Find Full Text PDF

F-box protein is a major subunit of the Skp1-Cullin-F-box (SCF) complex. We previously isolated an F-box gene from wheat, TaFBA1, and here we show that overexpression of TaFBA1 in transgenic plants under salt stress increases germination rate, root elongation, and biomass accumulation compared with WT plants. Improvements in the photosynthetic rate and its corresponding parameters were also found in the transgenic plants.

View Article and Find Full Text PDF

Emerging evidence suggests that E3 ligases play critical roles in diverse biological processes, including pathogen resistance in plants. In the present study, an ubiquitin ligase gene (SlBAH1) was cloned from a tomato plant, and the functions of the gene were studied. The SlBAH1 gene contained 1002 nucleotides and encodes a protein with 333 amino acids.

View Article and Find Full Text PDF

E3 ligase plays an important role in the response to many environment stresses in plants. In our previous study, constitutive overexpression of an F-box protein gene TaFBA1 driven by 35S promoter improved the drought tolerance in transgenic tobacco plants, but the growth and development in transgenic plants was altered in normal conditions. In this study, we used stress-inducible promoter RD29A instead of 35S promoter, as a results, the stress-inducible transgenic tobacco plants exhibit a similar phenotype with wild type (WT) plants.

View Article and Find Full Text PDF

To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses.

View Article and Find Full Text PDF

Ubiquitination plays an important role in regulating plant's development and adaptability to abiotic stress. To investigate the possible functions of a wheat monoubiquitin gene Ta-Ub2 in abiotic stress in monocot and compare it with that in dicot, we generated transgenic Brachypodium plants overexpressing Ta-Ub2 under the control of CaMV35s and stress-inducible RD29A promoters. The constitutive expression of Ta-Ub2 displayed slight growth inhibition in the growth of transgenic Brachypodium distachyon under the control conditions.

View Article and Find Full Text PDF

Welsh onion (Allium fistulosum L.) has long been cultivated as a vegetable and spice for its flavor and aroma. However, transcriptomic and genomic data for A.

View Article and Find Full Text PDF

Developing multifunctional near-infrared (NIR) light-driven photothermal agents is in high demand for efficient cancer therapy. Herein, PEGylated Cu3BiS3 hollow nanospheres (HNSs) with an average diameter of 80 nm were synthesized through a facile ethylene glycol-mediated solvothermal route. The obtained PEGylated Cu3BiS3 HNSs exhibited strong NIR optical absorption with a large molar extinction coefficient of 4.

View Article and Find Full Text PDF

As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants.

View Article and Find Full Text PDF

Drought is one of the most important factors limiting plant growth and development. We identified a gene in wheat (Triticum aestivum L.) under drought stress named TaFBA1.

View Article and Find Full Text PDF

Garlic is widely used as a spice throughout the world for the culinary value of its flavor and aroma, which are created by the chemical transformation of a series of organic sulfur compounds. To analyze the transcriptome of Allium sativum and discover the genes involved in sulfur metabolism, cDNAs derived from the total RNA of Allium sativum buds were analyzed by Illumina sequencing. Approximately 26.

View Article and Find Full Text PDF

Background: Sentinel lymph node (SLN) biopsy has been used to assess patients with papillary thyroid carcinoma (PTC). To achieve its full potential the rate of SLN identification must be as close to 100 percent as possible. In the present study we compared the combination of preoperative lymphoscintigraphy scanning by sulfur colloid labeled with 99 m Technetium, gamma-probe guided surgery, and methylene blue with methylene blue, alone, for sentinel node identification in younger women with unilateral low-risk PTC.

View Article and Find Full Text PDF

A sensitive reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for rapid visual detection of pandemic influenza A H1N1 virus infection. The reaction was performed in one step in a single tube at 65 degrees C for 60 min with the addition of hydroxynaphthol blue (HNB) dye prior to amplification. The detection limit of the RT-LAMP assay was approximately 60 copies, and no cross-detection was observed.

View Article and Find Full Text PDF