Publications by authors named "Shulian Zeng"

Gliomas are highly invasive and aggressive tumors having the highest incidence rate of brain cancer. Identifying effective prognostic and potential therapeutic targets is necessitated. The relationship of pyroptosis, a form of programmed cellular death, with gliomas remains elusive.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) represents a common acute cerebrovascular event that imparts high rates of disability. The microglia-mediated inflammatory response is a critical factor in determining cerebral damage post-ICH. Clemastine (CLM) is a histamine receptor H1 (HRH1) antagonist that has been shown to modulate the inflammatory response.

View Article and Find Full Text PDF

The c-Jun N-terminal kinase (JNK)/c-Jun cascade-dependent neuronal apoptosis has been identified as a central element for early brain injury (EBI) following subarachnoid hemorrhage (SAH), but the molecular mechanisms underlying this process are still thoroughly undefined to date. In this study, we found that pan-histone deacetylase (HDAC) inhibition by TSA, SAHA, VPA, and M344 led to a remarkable decrease in the phosphorylation of JNK and c-Jun, concomitant with a significant abrogation of apoptosis caused by potassium deprivation in cultured cerebellar granule neurons (CGNs). Further investigation showed that these effects resulted from HDAC inhibition-induced transcriptional suppression of MKK7, a well-known upstream kinase of JNK.

View Article and Find Full Text PDF

Histone deacetylase 6 (HDAC6) activity contributes to the malignant proliferation, invasion, and migration of glioma cells (GCs), but the molecular mechanisms underlying the processes remains elusive. Here, we reported that HDAC6 inhibition by Ricolinostat (ACY-1215) or CAY10603 led to a remarkable decrease in the phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun, which preceded its suppressive effects on glioma cell growth. Further investigation showed that these effects resulted from HDAC6 inhibitor-induced suppression of MAPK kinase 7 (MKK7), which was identified to be critical for JNK activation and exerts the oncogenic roles in GCs.

View Article and Find Full Text PDF
Article Synopsis
  • JNK activity is linked to the aggressive behavior and drug resistance of glioma cells, but how it’s activated is not fully understood.
  • MKK7 is identified as the main activator of JNK in glioma cells, with its expression correlating to glioma grade and JNK/c-Jun activation.
  • The regulation of MKK7 transcription relies on HDAC4 along with SP1 and KLF5, and inhibiting HDAC4 can reduce malignant traits in glioma, suggesting a potential therapeutic approach targeting this pathway.
View Article and Find Full Text PDF

Paeoniflorin (PF), as one of the important valid natural compounds of the total glucosides of peony, has displayed a potential effect in cancer prevention and treatment. Aggressive migration and invasion, as an important process, can contribute to tumor progression through infiltrating the surround normal tissue. Actin cytoskeleton rearrangement plays a key role in cells migration and invasion, involving multiple signal pathways.

View Article and Find Full Text PDF