We observed evolutionary conservation of canonical nuclear localization signal sequences (K(K/R)X(K/R)) in the C-terminal polybasic regions (PBRs) of some Rac and Rho isoforms. Canonical D-box sequences (RXXL), which target proteins for proteasome-mediated degradation, are also evolutionarily conserved near the PBRs of these small GTPases. We show that the Rac1 PBR (PVKKRKRK) promotes Rac1 nuclear accumulation, whereas the RhoA PBR (RRGKKKSG) keeps RhoA in the cytoplasm.
View Article and Find Full Text PDFAlthough muscarinic acetylcholine receptors (mAChRs) regulate proliferation in many cell types, the signaling pathways involved are unclear. The participation of the small GTPases Rac1 and RhoA in M(3) mAChR-mediated inhibition of proliferation was investigated by activating M(3) mAChRs stably transfected in Chinese hamster ovary cells stably coexpressing hemagglutinin (HA)-tagged wild-type or mutant Rac1 or RhoA proteins. Activation of M(3) mAChRs activates both Rac1 and RhoA and inhibits cell proliferation in all cell lines tested.
View Article and Find Full Text PDFThe unique signal transduction pathways that distinguish non-small cell lung carcinoma (NSCLC) from small cell lung carcinoma (SCLC) are poorly understood. We investigated the ability of edelfosine, an inhibitor of phosphatidylinositol-specific phospholipase C (PLC) to inhibit cell viability among four NSCLC cell lines and four SCLC cell lines. The differential sensitivity of cells to edelfosine's cytostatic and cytotoxic effects has been attributed to edelfosine-induced changes in the activities of many enzymes, including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), p38 kinase, and poly(ADP-ribose) polymerase (PARP).
View Article and Find Full Text PDF