Publications by authors named "Shulamit Manulis-Sasson"

Article Synopsis
  • Pantoea agglomerans has evolved from a harmless commensal bacterium into a host-specific gall-forming pathogen by acquiring a plasmid with a type III secretion system (T3SS) and specific effector proteins (T3Es).
  • The pathovars Pag and Pab affect gypsophila and beet differently: Pag forms galls on gypsophila and triggers a hypersensitive response in beet, while Pab does the opposite.
  • Experiments with various bacterial strains showed that the T3Es hsvG and pthG are enough to produce galls on gypsophila, whereas hsvB and pseB are necessary for gall formation on beet, highlighting the importance of these specific effectors in host interactions
View Article and Find Full Text PDF

Cell-to-cell communication mediated by the diffusible signal factor (DSF) is a common form of gene regulation and plays an important role in virulence of many plant pathogenic bacteria including Xanthomonas spp. Here we describe several approaches to study the involvement of DSF-dependent QS system of the plant pathogenic bacteria Xanthomonas campestris pv. pelargonii (Xhp) as an example of the Xanthomonas spp.

View Article and Find Full Text PDF

Salmonella enterica serovar Typhimurium, a human enteric pathogen, has the ability to multiply and survive endophytically in plants. Genes encoding the type III secretion system (T3SS) or its effectors (T3Es) may contribute to its colonization. Two reporter plasmids for T3E translocation into plant cells that are based on hypersensitive response domains of avirulence proteins from the Pantoea agglomerans-beet and Xanthomonas euvesicatoria-pepper pathosystems were employed in this study to investigate the role of T3Es in the interaction of Salmonella ser.

View Article and Find Full Text PDF

Pantoea agglomerans, a widespread epiphytic bacterium, has evolved into a hypersensitive response and pathogenicity (hrp)-dependent and host-specific gall-forming pathogen by the acquisition of a pathogenicity plasmid containing a type III secretion system (T3SS) and its effectors (T3Es). Pantoea agglomerans pv. betae (Pab) elicits galls on beet (Beta vulgaris) and gypsophila (Gypsophila paniculata), whereas P.

View Article and Find Full Text PDF

Clavibacter michiganensis ssp. michiganensis (Cmm) causes substantial economic losses in tomato production worldwide. The disease symptoms observed in plants infected systemically by Cmm are wilting and canker on the stem, whereas blister-like spots develop in locally infected leaves.

View Article and Find Full Text PDF

Fire blight, caused by the bacterium Erwinia amylovora, is the most destructive disease of pears and other pome fruit trees worldwide. The disease was first detected in Israel in 1985, and in the 30 years since, the intensity of fire blight epidemics has varied markedly. During this time, there were two national pandemics: the first between 1994 and 1996 and the second in 2010.

View Article and Find Full Text PDF

The plant pathogen Clavibacter michiganensis subsp. michiganensis (Cmm) is a Gram-positive bacterium responsible for wilt and canker disease of tomato. While disease development is well characterized and diagnosed, molecular mechanisms of Cmm virulence are poorly understood.

View Article and Find Full Text PDF

Xanthomonas hortorum pv. pelargonii (Xhp), the causal agent of bacterial blight in pelargonium, is the most threatening bacterial disease of this ornamental worldwide. To gain an insight into the regulation of virulence in Xhp, we have disrupted the quorum sensing (QS) genes, which mediate the biosynthesis and sensing of the diffusible signal factor (DSF).

View Article and Find Full Text PDF

The plant pathogen Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterium responsible for wilt and canker disease of tomato. Although disease development is well characterized and diagnosed, molecular mechanisms of C.

View Article and Find Full Text PDF

The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C.

View Article and Find Full Text PDF

Gall formation by Pantoea agglomerans pv. gypsophilae is dependent on the hypersensitive response and pathogenicity (hrp) system. Previous studies demonstrated that PagR and PagI, regulators of the quorum-sensing system, induce expression of the hrp regulatory cascade (i.

View Article and Find Full Text PDF

The virulence of the bacterium Pantoea agglomerans pv. gypsophilae (Pag) on Gypsophila paniculata depends on a type III secretion system (T3SS) and its effectors. The hypothesis that plant-derived indole-3-acetic acid (IAA) plays a major role in gall formation was examined by disrupting basipetal polar auxin transport with the specific inhibitors 2,3,5-triiodobenzoic acid (TIBA) and N-1-naphthylphthalamic acid (NPA).

View Article and Find Full Text PDF

The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) causes wilt and canker disease of tomato (Solanum lycopersicum). Mechanisms of Cmm pathogenicity and tomato response to Cmm infection are not well understood.

View Article and Find Full Text PDF

The type III effector HsvG of the gall-forming Pantoea agglomerans pv. gypsophilae is a DNA-binding protein that is imported to the host nucleus and involved in host specificity. The DNA-binding region of HsvG was delineated to 266 amino acids located within a secondary structure region near the N-terminus of the protein but did not display any homology to canonical DNA-binding motifs.

View Article and Find Full Text PDF

HsvG and HsvB, two paralogous type III effectors of the gall-forming bacteria Pantoea agglomerans pv. gypsophilae and P. agglomerans pv.

View Article and Find Full Text PDF

Gall formation by Pantoea agglomerans pv. gypsophilae is controlled by hrp/hrc genes, phytohormones, and the quorum-sensing (QS) regulatory system. The interactions between these three components were investigated.

View Article and Find Full Text PDF

Pantoea agglomerans, a widespread epiphyte and commensal bacterium, has evolved into an Hrp-dependent and host-specific tumorigenic pathogen by acquiring a plasmid containing a pathogenicity island (PAI). The PAI was evolved on an iteron plasmid of the IncN family, which is distributed among genetically diverse populations of P. agglomerans.

View Article and Find Full Text PDF

The quorum-sensing (QS) regulatory system of the gall-forming Pantoea agglomerans pv. gypsophilae was identified. Mass spectral analysis, together with signal-specific biosensors, demonstrated that P.

View Article and Find Full Text PDF

Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram-positive actinomycete, causing bacterial wilt and canker disease in tomato (Solanum lycopersicum). Host responses to gram-positive bacteria and molecular mechanisms associated with the development of disease symptoms caused by Cmm in tomato are largely unexplored.

View Article and Find Full Text PDF

Pantoea agglomerans has been transformed from a commensal bacterium associated with many plants into a host-specific gall-forming pathogen by acquiring a plasmid-borne pathogenicity island. This pathogenicity island harbors the hrp/hrc gene cluster, in addition to genes encoding type III effector proteins, biosynthesis of the phytohormones indole-3-acetic acid and cytokinin, multiple diverse insertion sequences and pseudogenes. This review describes a unique model for understanding the emergence of new pathogens or new pathogenic variants, offering an insight into the function of type III effectors in host specificity and the evolution of a pathogen into pathovars.

View Article and Find Full Text PDF

Pantoea agglomerans has been transformed from a commensal bacterium into two related gall-forming pathovars by acquisition of pPATH plasmids containing a pathogenicity island (PAI). This PAI harbors an hrp/hrc gene cluster, type III effectors, and phytohormone biosynthetic genes. DNA typing by pulsed-field gel electrophoresis revealed two major groups of P.

View Article and Find Full Text PDF

Pantoea agglomerans pv. gypsophilae (Pag) elicits galls on gypsophila and a hypersensitive response on beet, whereas P. agglomerans pv.

View Article and Find Full Text PDF