Doping narrow-gap semiconductors is a well-established approach for designing efficient thermoelectric materials. Semiconducting half-Heusler (HH) and full-Heusler (FH) compounds have garnered significant interest within the thermoelectric field, yet the number of exceptional candidates remains relatively small. It is recently shown that the vacancy-filling approach is a viable strategy for expanding the Heusler family.
View Article and Find Full Text PDFWhile phonon anharmonicity affects lattice thermal conductivity intrinsically and is difficult to be modified, controllable lattice defects routinely function only by scattering phonons extrinsically. Here, through a comprehensive study of crystal structure and lattice dynamics of Zintl-type Sr(Cu,Ag,Zn)Sb thermoelectric compounds using neutron scattering techniques and theoretical simulations, we show that the role of vacancies in suppressing lattice thermal conductivity could extend beyond defect scattering. The vacancies in SrZnSb significantly enhance lattice anharmonicity, causing a giant softening and broadening of the entire phonon spectrum and, together with defect scattering, leading to a ~ 86% decrease in the maximum lattice thermal conductivity compared to SrCuSb.
View Article and Find Full Text PDFChemical doping is one of the most important strategies for tuning electrical properties of semiconductors, particularly thermoelectric materials. Generally, the main role of chemical doping lies in optimizing the carrier concentration, but there can potentially be other important effects. Here, we show that chemical doping plays multiple roles for both electron and phonon transport properties in half-Heusler thermoelectric materials.
View Article and Find Full Text PDF