Water and ion transport in nanochannels is crucial for membrane-based technology in biological systems. 2D materials, especially graphene oxide (GO), the most frequently used as the starting material, are ideal building blocks for developing synthetic membranes. However, the selective exclusion of small ions while maintaining in a pressured filtration process remains a challenge for GO membranes.
View Article and Find Full Text PDFProtein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of several pain-related substrates in spinal cord dorsal horn and are critically involved in the modification of pain transmission. The current study demonstrated that protein tyrosine phosphatase 1B (PTP1B), a unique endoplasmic reticulum-resident member of PTP family, displayed an activity-dependent increase in its protein expression and synaptic localization in spinal dorsal horn of adult male rats. PTP1B interacted with the Src Homology 3 (SH3) domain of Synapse-Associated Protein 102 (SAP102), one of the postsynaptic scaffolding proteins that anchored PTP1B at postsynaptic sites.
View Article and Find Full Text PDFApoptosis plays a critical role in the development of heart failure, and sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid naturally occurring in blood plasma. Some studies have shown that SPC inhibits hypoxia-induced apoptosis in myofibroblasts, the crucial non-muscle cells in the heart. Calmodulin (CaM) is a known SPC receptor.
View Article and Find Full Text PDFThe amyloid precursor protein (APP) is critical for the pathogenesis of Alzheimer's disease (AD). The AD patients usually have lower pain sensitivity in addition to cognitive impairments. However, considerably less is known as yet about the role of APP and its two mammalian homologues, amyloid precursor-like protein 1 and 2 (APLP1, APLP2), in spinal processing of nociceptive information.
View Article and Find Full Text PDFCasitas B-lineage lymphoma b (Cbl-b) is one of the E3 ubiquitin ligases that ubiquitinate Tropomyosin-related kinase A (TrkA), a key nerve growth factor receptor involved in the pathological pain. Here we found that Cbl-b was abundant in dorsal root ganglion (DRG) neurons of mice and co-localized with TrkA. Ubiquitination of TrkA by Cbl-b exerted a tonic negative control over the protein level of TrkA.
View Article and Find Full Text PDFIntroduction: Our previous studies have demonstrated advanced glycation end products (AGEs) was an important mediator in osteoarthritis (OA) which may induce mitochondrial dysfunction. AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and its downstream target peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) are the critical sensors that regulate mitochondrial biogenesis and have been recognized as therapeutic targets in OA. This study was designed to test whether AGEs caused mitochondrial dysfunction through modulation of AMPKα/SIRT1/PGC-1α.
View Article and Find Full Text PDFAim: The present study was performed to investigate the effect of Aesculus hippocastanum (AH; Venoplant®) on concanavalin A (ConA)-induced acute liver injury and explore the mechanism in mice.
Methods: ConA (20 mg/kg) was administered via tail vein injection to induce hepatic damage. The groups of AH (Venoplant®) were given at 65.
The main goal of our study was to characterize the population pharmacokinetics of vancomycin in critically ill Chinese neonates to develop a pharmacokinetic model and investigate factors that have significant influences on the pharmacokinetics of vancomycin in this population. The study population consisted of 80 neonates in the neonatal intensive care unit (ICU) from which 165 trough and peak concentrations of vancomycin were obtained. Nonlinear mixed effect modeling was used to develop a population pharmacokinetic model for vancomycin.
View Article and Find Full Text PDFOur and other studies have reported that homocysteine thiolactone (HTL) could induce endothelial dysfunction. However, the precise mechanism was largely unknown. In this study, we tested the most possible factor-endoplasmic reticulum (ER) stress, which was demonstrated to be involved in endothelial dysfunction in cardiovascular disease.
View Article and Find Full Text PDFAims: Recent studies have reported that intracellular calcium (Ca(2+)) mobilization is involved in homocysteine (Hcy)-induced endothelial dysfunction and the Na(+)/H(+) exchanger (NHE) is responsible for an increase in the intracellular Ca(2+) concentration in cardiovascular disease. We hypothesized that inhibition of the NHE had protective effects on Hcy-induced endothelial dysfunction.
Methods: Acetylcholine-induced endothelium-dependent relaxation (EDR) and biochemical parameters were measured in the rat isolated aorta.
Aims: The association between diabetes and neointimal expansion after vascular injury has been attributed to the accumulation of advanced glycation end products (AGEs). Here we investigated the inhibitory effect of cariporide, a specific Na(+)/H(+) exchanger 1 blocker, on neointimal proliferation induced by AGEs in a balloon injury model.
Methods: Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase (MMP) was monitored by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR.
Sheng Li Xue Bao
December 2012
This study was undertaken to observe the effect of acute stress on seizure occurrence in chronic period of epileptic model rats. Lithium-pilocarpine (LiCl-PILO)-induced epileptic rat model was constructed. At the spontaneous recurrent seizure period, acute stress stimulations such as cat's urine and foot electrical shock were applied to observe the behavioral changes and seizure occurrence.
View Article and Find Full Text PDFAims: Accumulation of advanced glycation end products (AGEs) plays a pivotal role in the mechanism by which aging contributes to osteoarthritis (OA). In the present study, we examined the effect of curcumin, a pharmacologically safe phytochemical agent, on AGE-induced tumor necrosis factor-α (TNF-α) and matrix metalloproteinase-13 (MMP-13) in rabbit chondrocytes.
Methods: Chondrocytes were derived from rabbit articular cartilage by enzymatic digestion.
Accumulation of advanced glycation end products (AGEs) which are known to adversely affect cartilage turnover and mechanical properties, provides a molecular mechanism by which aging contributes to the development of osteoarthritis. The objective of the present study was to investigate the role of peroxisome proliferator-activated receptor γ (PPARγ) in AGEs-mediated chondrocytes damage. In the cultured rabbit chondrocytes, our results show that the PPARγ agonist pioglitazone can concentration-dependently inhibit the AGEs-induced expression of TNF-α and MMP-13.
View Article and Find Full Text PDFWe investigated the effect of paraoxon on vascular contractility using organ baths in thoracic aortic rings of rabbits and examined the effect of paraoxon on calcium homeostasis using a whole-cell patch-clamp technique in isolated aortic smooth muscle cells of rabbits. The findings show that administration of paraoxon (30 microM) attenuated thoracic aorta contraction induced by phenylephrine (1 microM) and/or a high K+ environment (80 mM) in both the presence and absence of thoracic aortic endothelium. This inhibitory effect of paraoxon on vasoconstrictor-induced contraction was abolished in the absence of extracellular Ca2+, or in the presence of the Ca2+ channel inhibitor, verapamil.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2008
In this present study, we examined the role of Na(+)/H(+) exchanger 1 (NHE1) in the cultured rat vascular smooth muscle cell (VSMC) proliferation induced by advanced glycation end products (AGEs). AGEs significantly increased the [(3)H] thymidine incorporation of VSMC. Cariporide, an NHE1 inhibitor, dose-dependently attenuated the AGEs-induced increase in cell DNA synthesis.
View Article and Find Full Text PDF