YiiP from Shewanella oneidensis is a prokaryotic Zn/H antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn binding and protonation.
View Article and Find Full Text PDFYiiP is a prokaryotic Zn/H antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn binding and protonation.
View Article and Find Full Text PDFDespite tremendous success of molecular targeted therapy together with immunotherapy, only a small subset of patients can benefit from them. Chemotherapy remains the mainstay treatment for most of tumors including non-small cell lung cancer (NSCLC); however, non-selective adverse effects on healthy tissues and secondary resistance are the main obstacles. Meanwhile, the quiescent or dormant cancer stem-like cells (CSLCs) are resistant to antimitotic chemoradiotherapy.
View Article and Find Full Text PDFYiiP is a secondary transporter that couples Zn2+ transport to the proton motive force. Structural studies of YiiP from prokaryotes and Znt8 from humans have revealed three different Zn2+ sites and a conserved homodimeric architecture. These structures define the inward-facing and outward-facing states that characterize the archetypal alternating access mechanism of transport.
View Article and Find Full Text PDFWe predicted water-octanol partition coefficients for the molecules in the SAMPL7 challenge with explicit solvent classical molecular dynamics (MD) simulations. Water hydration free energies and octanol solvation free energies were calculated with a windowed alchemical free energy approach. Three commonly used force fields (AMBER GAFF, CHARMM CGenFF, OPLS-AA) were tested.
View Article and Find Full Text PDFAll-atom molecular dynamics simulations with stratified alchemical free energy calculations were used to predict the octanol-water partition coefficient [Formula: see text] of eleven small molecules as part of the SAMPL6-[Formula: see text] blind prediction challenge using four different force field parametrizations: standard OPLS-AA with transferable charges, OPLS-AA with non-transferable CM1A charges, AMBER/GAFF, and CHARMM/CGenFF. Octanol parameters for OPLS-AA, GAFF and CHARMM were validated by comparing the density as a function of temperature, the chemical potential, and the hydration free energy to experimental values. The partition coefficients were calculated from the solvation free energy for the compounds in water and pure ("dry") octanol or "wet" octanol with 27 mol% water dissolved.
View Article and Find Full Text PDFDeficits in mitochondrial function is a critical inducement in the major pathways that drive neuronal cell death in ischemic process particularly. Drugs target to improve the mitochondrial function may be a feasible therapeutic choice in treatment with ischemic diseases. In the present study, we investigated whether 5-(4-hydroxy-3-dimethoxybenzylidene)-2-thioxo-4-thiazolidinone (RD-1), a compound derived from rhodanine, could protect against ischemic neuronal damage via improving mitochondrial function.
View Article and Find Full Text PDFProteasome inhibition interfering with many cell signaling pathways has been extensively explored as a therapeutic strategy for cancers. Proteasome inhibitor YSY01A is a novel agent that has shown remarkable anti-tumor effects; however, its mechanisms of action are not fully understood. Here we report that YSY01A is capable of suppressing cancer cell survival by induction of apoptosis.
View Article and Find Full Text PDFA variety of imaging methods can be used in the diagnosis of atherosclerotic plaques. In the present study, we investigated the morphology and composition of atherosclerotic plaque associated with ischemic cerebral infarction by comparing gemstone spectral computed tomography (GSCT) and traditional multi-slice CT (MSCT). In total, 200 patients were enrolled and divided into the experimental group (n=100), which underwent GSCT, and the control group (n=100), which underwent MSCT.
View Article and Find Full Text PDFBackground: Compound porcine cerebroside and ganglioside injection (CPCGI) is a neurotrophic drug used clinically to treat certain functional disorders of brain. Despite its extensive usage throughout China, the exact mechanistic targets of CPCGI are unknown. This study was carried out to investigate the protective effect of CPCGI against ischemic neuronal damage in rats with middle cerebral artery occlusion (MCAO) reperfusion injury and to investigate the neuroprotective mechanisms of CPCGI.
View Article and Find Full Text PDF