Publications by authors named "Shujian Yuan"

The ecological drivers that direct the assembly of viral and host bacterial communities are largely unknown, even though viral-encoded accessory genes help host bacteria survive in polluted environments. To understand the ecological mechanism(s) of viruses and hosts synergistically surviving under organochlorine pesticide (OCP) stress, we investigated the community assembly processes of viruses and bacteria at the taxon and functional gene levels in clean and OCP-contaminated soils in China using a combination of metagenomics/viromics and bioinformatics approaches. We observed a decreased richness of bacterial taxa and functional genes but an increased richness of viral taxa and auxiliary metabolic genes (AMGs) in OCP-contaminated soils (from 0 to 2,617.

View Article and Find Full Text PDF

Bacterial viruses are the most abundant biological entities in soil ecosystems. Owing to the advent of metagenomics and viromics approaches, an ever-increasing diversity of virus-encoded auxiliary metabolic genes (AMGs) have been identified in soils, including those involved in the transformation of carbon, phosphorus, and sulfur, degradation of organic pollutants, and antibiotic resistance, among other processes. These viral AMGs can alter soil biogeochemical processes and metabolic activities by interfering with bacterial host metabolism.

View Article and Find Full Text PDF

Using earthworms to remove soil organic pollutants is a common bioremediation method. However, it remains challenging to evaluate and predict their effect on removing soil organic pollutants based on earthworm toxicology and pollutant degradation rates. Peer-reviewed journal articles on ecotoxicology and bioremediation from the years 1974-2020 (cutoff date September 2020) were selected for meta-analysis to quantify the effect size of earthworms on organic pollutant degradation.

View Article and Find Full Text PDF