The presence of hexavalent chromium species (Cr) in wastewater from manufacturing industries such as electroplating and leather production can pose serious health hazards. To address these concerns, this study developed a novel adsorbent based on activated carbon as the primary material to attract Cr. Activated carbon has been modified with several other components to improve its comprehensive performance, including adsorption capacity, chemical stability, collectability, and reusability.
View Article and Find Full Text PDFEnsuring the microbiological safety of drinking water is critical to protect public health. This study aimed to evaluate the reliability of real-time bacteriological counter coupled with an online dialysis membrane-based pre-treatment system for continuously monitoring bacterial cell counts in sand filter effluents of a full-scale drinking water treatment plant. The pre-treatment system, which included anion exchange resins (porous polymeric microbeads that trap ions for releasing other ions) for dialysate regeneration, successfully achieved the stable attenuation of background interfering substances (humic acids) during the 19-d test.
View Article and Find Full Text PDFObjective: Remineralization is an indispensable phenomenon during the natural healing process of enamel decay. The incorporation of zinc (Zn) into enamel crystal could accelerate this remineralization. The present study was designed to investigate the concentration and distribution of Zn in remineralized enamel after gum chewing.
View Article and Find Full Text PDFMagnetic iron oxide nanoparticles were successfully prepared by a novel reverse precipitation method with the irradiation of ultrasound. TEM, XRD and SQUID analyses showed that the formed particles were magnetite (Fe(3)O(4)) with about 10nm in their diameter. The magnetite nanoparticles exhibited superparamagnetism above 200K, and the saturation magnetization was 32.
View Article and Find Full Text PDFAqueous sample solutions containing noble metal ions (HAuCl4, Na2PdCl4, H2PtCl6), polyethyleneglycol monostearate, and magnetic maghemite nanoparticles were irradiated with high power ultrasound. Analyses of the products showed that noble metal ions were reduced by the effects of ultrasound, and the formed noble metal nanoparticles were uniformly immobilized on the surface of the maghemite. The present "one pot process" significantly simplifies the immobilization of noble metal nanoparticles on the surface of supports, compared with the conventional impregnation method.
View Article and Find Full Text PDFSonochemically prepared Pt, Au and Pd nanoparticles were successfully immobilized onto TiO2 with the assistance of prolonged sonication. Their photocatalytic activities were evaluated in H2 production from aqueous ethanol solutions. Beside the sonochemical method, the conventional impregnation method was also employed to prepare photocatalysts.
View Article and Find Full Text PDFBimetallic Au/Pd nanoparticles supported on a silica matrix were prepared by an ultrasonic technique. The samples heat-treated at 100, 200, 300 and 400 degrees C were examined with techniques of XRD (X-ray diffraction), TEM and XAS (X-ray absorption spectrometry) for studying correlation between their structure and the catalytic activity of hydrogenation of cyclohexene. Even after the heat treatment at 400 degrees C, the particles were smaller than 20 nm and well dispersed in the matrix without agglomeration nor sintering.
View Article and Find Full Text PDF