Publications by authors named "Shuji Hayase"

We report the structural and optoelectronic properties of Zinc oxide (ZnO) nanostructures prepared by hydrothermal method. The morphological, structural and optical properties of the grown ZnO nanostructures were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence spectroscopy (PL) respectively. Upon addition of relatively small amount of KI during the in-situ hydrothermal growth the nanorods were formed, further increasing the concentration led to increased diameter of these nanorods and finally at relatively higher concentration of KI, ZnO nanosheets were formed.

View Article and Find Full Text PDF

We report results of the studies relating to the fabrication of a highly sensitive label free biosensor based on graphene oxide (GO) platform for the detection of aflatoxin B1 (AFB1) which is most toxic and predominant food toxin, using electrochemical impedance spectroscopy. The structural and optical characterization of GO/Au and anti-AFB1/GO/Au has been done by electron microscopy, Raman, X-ray diffraction (XRD), UV-vis and electrochemical impedance spectroscopy (EIS). The impedimetric sensing response of immunoelectrode as a function of AFB1 concentration reveals wider linear detection range (0.

View Article and Find Full Text PDF

In this paper, we report the growth of polypyrrole (PPy) nanotube arrays using template-assisted electrochemical polymerization to fabricate enzymatic glucose biosensors. The PPy nanotubes were grown on platinum-coated alumina membranes (Anodisc™s). By varying the polymerization time during the potentiostatic electropolymerization, the size/diameter of the PPy nanotubes were controlled, leading to changes in the subsequent enzyme immobilization (via physical adsorption).

View Article and Find Full Text PDF

In Ti0(2) nanostructured dye-sensitized solar cells indole based organic dyes D149, D205 exhibits greater power conversion efficiency. Such organic dye molecules are easily undergone for aggregation. Aggregation in dye molecules leads to reduce electron transfer process in dye-sensitized solar cells.

View Article and Find Full Text PDF