The cardiac sarco/endoplasmic reticulum Ca-dependent ATPase 2a (SERCA2a) plays a central role in Ca handling within cardiomyocytes and is negatively regulated by phospholamban (PLN), a sarcoplasmic reticulum (SR) membrane protein. The activation of SERCA2a, which has been reported to improve cardiac dysfunction in heart failure, is a potential therapeutic approach for heart failure. Therefore, we developed a novel small molecule, compound A and characterized it both in vitro and in vivo.
View Article and Find Full Text PDFOur study measured circulating microRNA (miRNA) levels in the plasma of calsequestrin (CSQ)-tg mouse, a severe heart failure model, and evaluated whether treatment with angiotensin II type 1 receptor blocker, azilsartan medoxomil (AZL-M) influenced their levels using miRNA array analysis. MiR-146a, miR-149, miR-150, and miR-342-3p were reproducibly reduced in the plasma of CSQ-tg mice. Among them, miR-146a and miR-342-3p were significantly restored by AZL-M, which were associated with improvement of survival rate and reduction of congestion.
View Article and Find Full Text PDFIn the course of our research into new types of non-acylguanidine Na(+)/H(+) exchanger (NHE) inhibitors, we designed and synthesized aryl-fused tetrahydropyranylidene and cyclohexylidene aminoguanidine derivatives I (X = O, CH(2)), which were tested for their inhibitory effects on rat platelet NHEs. After optimization, we found that the S isomer of tetrahydroquinoline derivatives that possess a methyl group in the 4-position and a halogen or methyl group in the o-position of Ar(2) exhibited high inhibitory activity. In these compounds, (5E,7S)-[[7-(5-fluoro-2-methylphenyl)-4-methyl-7,8-dihydro-5(6H)-quinolinylidene]amino]guanidine dimethanesulfonate (18, T-162559) was found to be a potent inhibitor of both rat and human platelet NHEs, with IC(50) values of 14 and 13 nM, respectively.
View Article and Find Full Text PDF