With the projected expansion of the general aviation sector and recent breakthroughs in sustainable aviation fuels (SAF), accurately measuring emissions from novel aircraft engines powered by SAF is paramount for evaluating the role of aviation industry in emission reduction trends and environmental consequences. Current SAF research primarily centers on low blend ratios, neglecting data on 100% SAF. This study bridges this gap by experimentally determining emissions indices for gaseous pollutants (CO, CO, HC, NOx), total particulate matter (PM) counts and sizes, and non-volatile particulate matter (nvPM) number and mass concentrations from a heavy-fuel aircraft piston engines (HF-APE) using hydroprocessed esters and fatty acids-derived SAF (HEFA-SAF), adhering to airworthiness-standard sampling and measurement protocols.
View Article and Find Full Text PDFThis paper develops a thermodynamic entropy-based life prediction model to estimate the low-cycle fatigue (LCF) life of the nickel-based superalloy GH4169 at elevated temperature (650 °C). The gauge section of the specimen was chosen as the thermodynamic system for modeling entropy generation within the framework of the Chaboche viscoplasticity constitutive theory. Furthermore, an explicitly numerical integration algorithm was compiled to calculate the cyclic stress-strain responses and thermodynamic entropy generation for establishing the framework for fatigue life assessment.
View Article and Find Full Text PDFTurning is a typical machining process, which is widely used in the manufacturing process of parts. The residual stress introduced by turning has a significant influence on the mechanical properties, fatigue performance, and service safety, and is one of the key factors affecting the fatigue life of parts. Conventional residual stress prediction models based on cutting parameters cannot consider all the influencing factors of turning and are strongly dependent on the specific cutting environment and tool, so they have limitations.
View Article and Find Full Text PDFGlobal air transportation has grown rapidly in the past decade until the recent coronavirus pandemic. Previous research has demonstrated that particulate matter (PM) emissions from aircraft gas turbine engines can impair human health and environment, and may play a significant role in global climate change via direct absorption of solar radiation and indirect effect by their interaction with clouds. Using alternative aviation fuels (AAFs) from different sources have become a promising means to reduce aviation PM emissions and ensure energy sustainability.
View Article and Find Full Text PDFBlade tip clearance (BTC) measurement and active clearance control (ACC) are becoming crucial technologies in aero-engine health monitoring so as to improve the efficiency and reliability as well as to ensure timely maintenance. Eddy current sensor (ECS) offers an attractive option for BTC measurement due to its robustness, whereas current approaches have not considered two issues sufficiently. One is that BTC affects the response time of a measurement loop, the other is that ECS signal decays with increasing speed.
View Article and Find Full Text PDF