Despite the prevalence of pericytes in the microvasculature of the heart, their role during ischemia-induced remodeling remains unclear. We used multiple lineage-tracing mouse models and found that pericytes migrated to the injury site and expressed profibrotic genes, coinciding with increased vessel leakage after myocardial infarction (MI). Single-cell RNA-Seq of cardiac pericytes at various time points after MI revealed the temporally regulated induction of genes related to vascular permeability, extracellular matrix production, basement membrane degradation, and TGF-β signaling.
View Article and Find Full Text PDFCardiac fibrosis is a pathological process associated with various forms of heart failure. This study identified latent transforming growth factor-β binding protein 2, cartilage oligomeric matrix protein, and cartilage intermediate layer protein 1 as potential biomarkers for cardiac fibrosis. All 3 encoded proteins showed increased expression in fibroblasts after transforming growth factor-β stimulation in vitro and localized specifically to fibrotic regions in vivo.
View Article and Find Full Text PDFCardiovascular disease is a leading cause of mortality in the world and is exacerbated by the presence of cardiac fibrosis, defined by the accumulation of noncontractile extracellular matrix proteins. Cardiac fibrosis is directly linked to cardiac dysfunction and increased risk of arrhythmia. Despite its prevalence, there is a lack of efficacious therapies for inhibiting or reversing cardiac fibrosis, largely due to the complexity of the cell types and signaling pathways involved.
View Article and Find Full Text PDFThe cellular mechanisms driving cardiac tissue formation remain poorly understood, largely due to the structural and functional complexity of the heart. It is unclear whether newly generated myocytes originate from cardiac stem/progenitor cells or from pre-existing cardiomyocytes that re-enter the cell cycle. Here, we identify the source of new cardiomyocytes during mouse development and after injury.
View Article and Find Full Text PDFNkx2-5 is a homeobox-containing transcriptional regulator that serves as one of the earliest markers of cardiac lineage commitment. To study the role of Nkx2-5-expressing progenitors at specific time points in cardiac development, we have generated a novel and inducible NKX2-5 mouse line by knocking in a CreER cassette into the Nkx2-5 genomic locus, while preserving the endogenous Nkx2-5 gene to avoid haploinsufficiency. We evaluated the specificity and efficiency of CreER activity after 4-OHT injection by crossing Nkx2-5 mice with a Rosa26 reporter strain.
View Article and Find Full Text PDFApolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known.
View Article and Find Full Text PDF