Biocompatible porous scaffolds with adjustable pore structures, appropriate mechanical properties and drug loading properties are important components of bone tissue engineering. In this work, biocompatible sodium alginate (SA)/collagen (Col) multiscale porous scaffolds containing poly(ε-caprolactone) microspheres (Ms-PCL) have been facilely fabricated based on 3D extrusion printing of the pre-crosslinked composite hydrogels. The prepared composite hydrogels can be 3D extrusion printed into porous scaffolds with different designed shapes and adjustable pore structures.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2019
The construction of ceramic components with UV curing is a developing trend by an additive manufacturing (AM) technology, due to the excellent advantages of high precision selective fixation and rapid prototyping, the application of this technology to bone defect repair had become one of the hotspots of research. Hydroxyapatite (HAP) is one of the most popular calcium phosphate biomaterials, which is very close to the main ingredient of human bones. Thus, hydroxyapatite biomaterials are popular as bone graft materials.
View Article and Find Full Text PDF