Publications by authors named "Shuichiro Taya"

We usually interpret a trapezoidal image on our retina as a slanted rectangle rather than a frontoparallel trapezoid, because we use a statistical assumption (i.e. rectangles are more common than trapezoids), called a 'prior', for recovering the 3D world from ambiguous 2D images.

View Article and Find Full Text PDF

Early studies on numeric cognition reported that numbers are spatially organised according to a left-to-right small-to-large 'number line'. We investigated whether this spatial-number organisation is dictated by visual experience. We tested congenitally and late blind, and blindfolded sighted participants in a random number generation task where in one block their heads were alternately turned left or right before uttering the number.

View Article and Find Full Text PDF

Current eye-tracking research suggests that our eyes make anticipatory movements to a location that is relevant for a forthcoming task. Moreover, there is evidence to suggest that with more practice anticipatory gaze control can improve. However, these findings are largely limited to situations where participants are actively engaged in a task.

View Article and Find Full Text PDF

Several studies have reported that task instructions influence eye-movement behavior during static image observation. In contrast, during dynamic scene observation we show that while the specificity of the goal of a task influences observers' beliefs about where they look, the goal does not in turn influence eye-movement patterns. In our study observers watched short video clips of a single tennis match and were asked to make subjective judgments about the allocation of visual attention to the items presented in the clip (e.

View Article and Find Full Text PDF

To explore how numbers are represented in depth in our mental space, we asked participants to sequentially speak random numbers while they observed forward/backward vection. We found that participants tended to generate larger numbers when they perceived backward self-motion. The results suggest that numerical magnitudes were topographically mapped onto our mental space from front to rear in an ascending order.

View Article and Find Full Text PDF

Observers tend to localize the final position of a suddenly vanished moving target farther along in the direction of the target motion (representational momentum). We report here that such localization errors are mediated by perceived motion rather than by retinal motion. By manipulating the cast shadow of a moving target, we induced illusory motion to a target stimulus while keeping the retinal motion constant.

View Article and Find Full Text PDF

We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation.

View Article and Find Full Text PDF

By using near-infrared spectroscopy (NIRS), we measured the changes in the oxygenated and deoxygenated hemoglobin (oxy-Hb and deoxy-Hb, respectively) concentrations while performing visual tasks. We conducted experiments using two tasks: a shape recognition task and a position recognition task. It was found that the oxy-Hb concentration was substantially higher in the lateral occipital regions during shape recognition than during position recognition.

View Article and Find Full Text PDF

A novel illusion in apparent size is reported. We asked observers to estimate the width and depth of vertically oriented elliptic cylinders depicted with texture or luminance gradients (experiment 1), or the height of horizontally oriented elliptic cylinders depicted with binocular disparity (experiment 2). The estimated width or height of cylinders showed systematic shrinkage in the direction of the gradual depth change.

View Article and Find Full Text PDF

To clarify whether stereo-slant aftereffects are independent of stimulated retinal position, two experiments compared the magnitude of aftereffects between the following two conditions: when the adaptation and test stimulus fell on (1) the same retinal position, and (2) on different retinal positions separated by 0.5 degrees -20 degrees . In Experiment 1, disc- or ring-shaped surface consisting of random-dots was presented at the central or peripheral visual fields.

View Article and Find Full Text PDF