Publications by authors named "Shuichi Shibuya"

Article Synopsis
  • * A study on mice with reduced mitochondrial superoxide dismutase (SOD2) showed that a lack of this enzyme led to increased muscle glycogen and motor dysfunction, indicating a link between mitochondrial health and muscle performance.
  • * The research found that the enzyme responsible for breaking down glycogen (GP-M) was less active in these mice and could be restored by antioxidants, suggesting that maintaining mitochondrial redox balance is crucial for proper glycogen metabolism and muscle function.
View Article and Find Full Text PDF

Aim: Geraniol is an acyclic monoterpenoid that is abundant in many plants, including rose, lemongrass, and lavender. As geraniol has various beneficial functions, rose oil rich in geraniol is not only used for aromatherapy but also as a supplement to promote health benefits. However, the beneficial effects of geraniol on age-related pathologies are unknown.

View Article and Find Full Text PDF

PAPLAL, a mixture of platinum (nPt) and palladium (nPd) nanoparticles, is widely used as a topical agent because of its strong antioxidant activity. Allergic contact dermatitis (ACD) is one of the most common occupational skin diseases worldwide. However, the role of oxidative stress in ACD remains unclear.

View Article and Find Full Text PDF

Musculoskeletal disease can be a serious condition associated with aging that may lead to fractures and a bedridden state due to decreased motor function. In addition to exercise training to increase muscle mass, increasing muscle function with the intake of functional foods is an effective treatment strategy for musculoskeletal disease. Muscle-specific SOD2-deficient mice (muscle-) show a severe disturbance in exercise in association with increased mitochondrial reactive oxygen species, as well as mitochondrial dysfunction and muscle damage.

View Article and Find Full Text PDF

Intracellular superoxide dismutases (SODs) maintain tissue homeostasis via superoxide metabolism. We previously reported that intracellular reactive oxygen species (ROS), including superoxide accumulation caused by cytoplasmic SOD (SOD1) or mitochondrial SOD (SOD2) insufficiency, induced p53 activation in cells. SOD1 loss also induced several age-related pathological changes associated with increased oxidative molecules in mice.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) metabolism is regulated by the oxygen-mediated enzyme reaction and antioxidant mechanism within cells under physiological conditions. Xanthine oxidoreductase (XOR) exhibits two inter-convertible forms (xanthine oxidase (XO) and xanthine dehydrogenase (XDH)), depending on the substrates. XO uses oxygen as a substrate and generates superoxide (O) in the catalytic pathway of hypoxanthine.

View Article and Find Full Text PDF

Acai ( Mart. Palmae, Arecaceae) is a palm plant native to the Brazilian Amazon. It contains many nutrients, such as polyphenols, iron, vitamin E, and unsaturated fatty acids, so in recent years, many of the antioxidant and anti-inflammatory effects of acai have been reported.

View Article and Find Full Text PDF

Redox imbalance induces oxidative damage and causes age-related pathologies. Mice lacking the antioxidant enzyme SOD1 (Sod1) exhibit various aging-like phenotypes throughout the body and are used as aging model mice. Recent reports suggested that age-related changes in the intestinal environment are involved in various diseases.

View Article and Find Full Text PDF

Palladium (Pd) is a common metal found in jewellery and dental appliances, but it has been shown to be likely to cause metal allergy. We previously reported that platinum (nPt) and palladium (nPd) nanoparticle-containing mixture (PAPLAL) has both superoxide dismutase and catalase activities and that the topical application of PAPLAL improved skin atrophy induced by chronic oxidative damage in an ageing mouse model. However, the safety of PAPLAL for preventing Pd allergy remains unclear.

View Article and Find Full Text PDF

Aging is characterized by accumulation of chronic and irreversible oxidative damage, chronic inflammation, and organ dysfunction. Superoxide dismutase (SOD) serves as a major enzyme for cellular superoxide radical metabolism and physiologically regulates cellular redox balance throughout the body. Copper/zinc superoxide dismutase-deficient (SOD1) mice showed diverse phenotypes associated with enhanced oxidative damage in whole organs.

View Article and Find Full Text PDF

Heterosis is the beneficial effect of genetical heterogeneity in animals and plants. Although heterosis induces changes in the cells and individual abilities, few reports have described the effect of heterosis on the female reproductive ability during aging. In this study, we investigated the reproductive capability of genetically heterogeneous (HET) mice established by the four-way crossing of C57BL/6N, BALB/c, C3H/He, and DBA/2.

View Article and Find Full Text PDF

Ascorbic acid (AA) possesses multiple beneficial functions, such as regulating collagen biosynthesis and redox balance in the skin. AA derivatives have been developed to overcome this compound's high fragility and to assist with AA supplementation to the skin. However, how AA derivatives are transferred into cells and converted to AA in the skin remains unclear.

View Article and Find Full Text PDF

The oxidative damages induced by a redox imbalance cause age-related changes in cells and tissues. Superoxide dismutase (SOD) enzymes play a pivotal role in the antioxidant system and they also catalyze superoxide radicals. Since the loss of cytoplasmic SOD (SOD1) resulted in aging-like phenotypes in several types of murine tissue, SOD1 is essential for the maintenance of tissue homeostasis.

View Article and Find Full Text PDF

Cu-Zn superoxide dismutase (Sod1) loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd) and platinum (Pt) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years.

View Article and Find Full Text PDF

Aging is characterized by increased oxidative stress, chronic inflammation, and organ dysfunction, which occur in a progressive and irreversible manner. Superoxide dismutase (SOD) serves as a major antioxidant and neutralizes superoxide radicals throughout the body. In vivo studies have demonstrated that copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice show various aging-like pathologies, accompanied by augmentation of oxidative damage in organs.

View Article and Find Full Text PDF

Age-related skin thinning is correlated with a decrease in the content of collagen in the skin. Accumulating evidence suggests that collagen peptide (CP) and vitamin C (VC) transcriptionally upregulate type I collagen in vivo. However, the additive effects of CP and VC on age-related skin changes remain unclear.

View Article and Find Full Text PDF

Oxidative damages induced by a redox imbalance cause age-related changes in cells and tissues. Superoxide dismutase (SOD) enzymes play a major role in the antioxidant system and they also catalyze superoxide radicals (O2·-). Since the loss of cytoplasmic SOD (SOD1) resulted in aging-like phenotypes in several types of mouse tissue, SOD1 is essential for the maintenance of tissue homeostasis.

View Article and Find Full Text PDF

Forty-six strains of Malassezia spp. with atypical biochemical features were isolated from 366 fresh clinical isolates from human subjects and dogs. Isolates obtained in this study included 2 (4.

View Article and Find Full Text PDF