Publications by authors named "Shuichi Nakamura"

Decyanation after α-functionalization by exploiting the inherent properties of cyano groups enables the strategic assembly of a carbon scaffold. Herein, we demonstrate an amine-ligated boryl radical-mediated cyano group transfer (CGT) strategy of malononitriles under photocatalytic conditions. This strategy allows for the cleavage of C(sp)-CN and the formation of C(sp)-D and C(sp) to realize decyanative deuteration and cyclization via radical-polar crossover.

View Article and Find Full Text PDF

Many bacteria swim in liquids and move over solid surfaces by rotating flagella. The bacterial flagellum is a supramolecular protein complex that is composed of about 30 different flagellar proteins ranging from a few to tens of thousands. Despite structural and functional diversities of the flagella among motile bacteria, the flagellum commonly consists of a membrane-embedded rotary motor fueled by an ion motive force across the cytoplasmic membrane, a universal joint, and a helical propeller that extends several micrometers beyond the cell surface.

View Article and Find Full Text PDF

Herein, we present the enantioselective synthesis of 2,3-dihydro-4-quinolones bearing chiral tetrasubstituted carbons from isatins and 2'-aminoacetophenones. The transformation is mediated by a chiral phosphoric acid catalyst and proceeds via an generated ketimine and subsequent enantioselective intramolecular cyclization. The methodology features a broad scope and functional group tolerance with yields and enantioselectivities of up to 99% and 98% ee.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the motility differences between filamentous and comma-shaped forms of the cholera bacterium O1 strain under different viscosity levels.
  • Filamentous cells show improved motility in viscous environments, aiding their survival, particularly in the human gut.
  • The findings suggest that these filamentous forms have a better ability to navigate through mucus layers, which could enhance their role in causing infections and inform new approaches to cholera management.
View Article and Find Full Text PDF

Chiral phosphine-containing amino acids are useful motifs in pharmaceutical compounds. In this study, we developed the asymmetric conjugate addition of phosphine sulfides with α-substituted β-nitroacrylates to synthesize phosphine-containing amino acid precursors with chiral tetrasubstituted carbon centers. This method showed a wide substrate scope, and the obtained products were converted into various chiral compounds.

View Article and Find Full Text PDF

An Eosin Y-catalyzed visible light-promoted 1,4-peroxidation-sulfonylation of enynones was achieved to give tetrasubstituted allenes. The photoredox catalysis of Eosin Y allowed the concomitant formation of peroxy and sulfonyl radicals, where the preferential peroxy radical addition to the alkene moiety of enynones resulted in the subsequent α-keto radical-sulfonyl radical cross couplings. The developed photoredox catalysis of Eosin Y demonstrates a regioselective 1,4-diradical addition strategy, opening up a new possibility of diradical functionalization of conjugate systems.

View Article and Find Full Text PDF

Pathogenic spirochetes cause a range of serious human diseases such as Lyme disease (LD), syphilis, leptospirosis, relapsing fever (RF), and periodontal disease. Motility is a critical virulence factor for spirochetes. From the mechanical perspective of the infection, it has been widely believed that flagella are the sole key players governing the migration and dissemination of these pathogens in the host.

View Article and Find Full Text PDF

Bacterial motility is often a crucial virulence factor for pathogenic species. A common approach to study bacterial motility is fluorescent labeling, which allows detection of individual bacterial cells in a population or in host tissues. However, the use of fluorescent labeling can be hampered by protein expression stability and/or interference with bacterial physiology.

View Article and Find Full Text PDF

Catalytic enantioselective synthesis methodologies have been actively explored and developed owing to the significance of chiral molecules and their utilities. In particular, unnatural α-amino acids with tetrasubstituted stereogenic carbon centers (α-tertiary amino acids; ATAAs) are undoubtedly among the most valuable compounds. Asymmetric addition to an α-iminoester or α-iminoamide is widely recognized as a straightforward, powerful, and atom-economical strategy for accessing optically active α-amino acids and their derivatives.

View Article and Find Full Text PDF

The enantioselective reaction of α-substituted β-nitroacrylates with oxazol-5-(4)-ones (oxazolones) to construct consecutive tetrasubstituted stereogenic centers was accomplished. A cinchona alkaloid sulfonamide catalyst afforded products bearing vicinal chiral centers with excellent enantio- and diastereoselectivities. The obtained products were successively converted into various chiral compounds without loss of their enantiopurity.

View Article and Find Full Text PDF

Velocity is a physical parameter most commonly used to quantify bacterial swimming. In the steady-state motion at a low Reynolds number, the swimming force can be estimated from the swimming velocity and the drag coefficient based on the assumption that the swimming force balances with the drag force exerted on the bacterium. Though the velocity-force relation provides a significant clue to understand the swimming mechanism, the odd configuration of bacteria could develop problems with the accuracy of the force estimation.

View Article and Find Full Text PDF

Spirochetes are Gram-negative bacteria with helical or flat wave morphology and move using flagella residing beneath the outer membrane. Most commonly, flagellated bacteria swim in liquid. Meanwhile, some species of spirochete not only swim but keep moving after adhering to solid surfaces, and such amphibious motility is believed to be significant for pathogenicity.

View Article and Find Full Text PDF

The bacterial flagellar motor is embedded within the cell envelop and rotates the long helical filament, which acts as a molecular screw to propel the bacterium. The flagellar motor comprises a rotor and a dozen stator units, converting ion flux through the stator unit into torque. However, the energy coupling mechanism has not been fully understood.

View Article and Find Full Text PDF

The first enantioselective reaction of α-isocyanoacetonitriles was developed. The reaction of various α-isocyanoacetonitriles with ketimines using cinchona alkaloid amide-Cu(II) catalysts afforded imidazolines with consecutive tetrasubstituted stereogenic carbon centers in good yields and high diastereo- and enantioselectivities. The stereoselectivity of the reaction is explained on the basis of the control experiment and density functional theory (DFT) calculations.

View Article and Find Full Text PDF

The first enantioselective hydrophosphonylation of ketimines with phosphine oxides was developed. The reaction of unprotected ketimines with phosphine oxides using a bis(imidazoline)-phosphoric acid catalyst gave chiral α-quaternary aminophosphorous compounds having a primary amino group in excellent yields and enantioselectivities. Based on experimental results and DFT calculation, transition states were proposed to explain the stereoselectivity of the reaction.

View Article and Find Full Text PDF

Nucleotide second messengers are universally crucial factors for the signal transduction of various organisms. In prokaryotes, cyclic nucleotide messengers are involved in the bacterial life cycle and in functions such as virulence and biofilm formation, mainly via gene regulation. Here, we show that the swimming motility of the soil bacterium Leptospira kobayashii is rapidly modulated by light stimulation.

View Article and Find Full Text PDF

If a bacterium has motility, it will use the ability to survive and thrive. For many pathogenic species, their motilities are a crucial virulence factor. The form of motility varies among the species.

View Article and Find Full Text PDF

The first enantioselective Pictet-Spengler reaction of acyclic α-ketoesters with tryptamines has been developed. Excellent yields and enantioselectivity were obtained for the reaction using chiral imidazoline-phosphoric acid catalysts. Density functional theory calculations suggested possible transition states that explain the origin of chiral induction.

View Article and Find Full Text PDF

The enantioselective reaction of imines bearing a cyano group as an activating group with malonic acid half thioesters gave chiral cyanamide derivatives with high enantioselectivity. The density functional theory (DFT) calculation clarified the stereochemical outcome and importance of the -cyano group for imines.

View Article and Find Full Text PDF

The first enantioselective aza-Henry reaction of non-activated cyclic iminoesters, derived from cyclic amino acids, has been developed. Good yields and enantioselectivities were observed for the reaction using our original cinchona alkaloid sulfonamide/zinc(II) catalyst. The transition state was proposed to explain the stereoselectivity based on experiments and DFT calculations.

View Article and Find Full Text PDF

The spirochete bacterium Leptospira kobayashii is a recently designated species of the genus . Here, we report the complete genome sequence of L. kobayashii strain E30, consisting of two circular chromosomes and two plasmids.

View Article and Find Full Text PDF

The application of existing semigrand canonical ensemble Monte Carlo algorithms to alloys requires the chemical potential difference values between pairs of atomic species in the alloys as inputs. However, finding the appropriate values for a target system at a desired temperature and bulk composition is a time-consuming task consisting of multiple test runs to determine the chemical potential differences. This problem becomes more serious when dealing with systems containing three or more atomic species, such as medium- and high-entropy alloys, due to the increase of the number of chemical potential differences that need to be calculated.

View Article and Find Full Text PDF

Treponema denticola, a helically shaped motile microorganism, is a major pathogen of chronic periodontitis. Major surface protein (Msp) and dentilisin are virulence factors of T. denticola that are located on the outer sheath.

View Article and Find Full Text PDF