Heavy metal contamination in underground water commonly occurs in industrial areas in Taiwan. Wine-processing waste sludge (WPWS) can adsorb and remove several toxic metals from aqueous solutions. In this study, WPWS particles were used to construct a permeable reactive barrier (PRB) for the remediation of a contaminant plume comprising HCrO, Cu, Zn, Ni, Cd, and AsO in a simulated aquifer.
View Article and Find Full Text PDFGeneral acid washing is commonly used to treat heavy metal-contaminated soils, but it is sometimes difficult to achieve remediation aims in severely polluted soils. If we expose the surfaces of Fe oxide minerals to reductive dissolution during washing treatment, more of the metals initially adsorbed to these surfaces will be liberated, which may encourage the removal of heavy metals. Initially, the metal extraction capabilities of nine chemical reductants were compared in ten soil samples polluted by Cr, Cu, Zn, and Ni.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2018
Various properties of soil affect the partition of organic contaminants within, and conversely, the properties of the organic contaminants also directly affect their partition behavior in soil. Therefore, understanding the effects of various properties of soil on the partition of organic contaminants favors subsequent assessment and provides soil remediation methods for policymakers. This study selected pentachlorophenol (PCP), a common hydrophobic ionizable organic compound in contaminated sites worldwide, as the target contaminant.
View Article and Find Full Text PDFThe binding between heavy metals and corresponding ligands affects their chemical behavior and toxicity in soil environments. The mechanisms of competitive complexation and/or chelation between Cd(2+) free cations and preferential concentrations of Cl(-), SO(4)(2-), and fulvate anions were investigated in simulated soil solutions at pH 4.00, 5.
View Article and Find Full Text PDFThe relationship between Pb uptake by leaf lettuce ( Lactuca sativa L.) and water-soluble low-molecular-weight organic acids (LMWOAs) in rhizosphere, as influenced by transpiration (high and low), has been studied. Studies were carried out by culturing lettuce plants grown for 2 weeks in pots filled with quartz sand mixed with anion-exchange resin and then for 30 days in a greenhouse.
View Article and Find Full Text PDF