Cell-derived Drug Delivery Systems (DDSs), particularly exosomes, have grown in popularity and have been increasingly explored as novel DDSs, due to their intrinsic targeting capabilities. However, clinical translation of exosomes is impeded by the tedious isolation procedures and poor yield. Cell-derived nanovesicles (CDNs) have recently been produced and proposed as exosome-mimetics.
View Article and Find Full Text PDFA hybrid gene delivery platform, micro Cell Vesicle Technology (mCVT), produced from the fusion of plasma membranes and cationic lipids, is presently used to improve the transfection efficiency of hard-to-transfect (HTT) cells. The plasma membrane components of mCVTs impart specificity in cellular uptake and reduce cytotoxicity in the transfection process, while the cationic lipids complex with the genetic material and provide structural integrity to mCVTs.
View Article and Find Full Text PDFA hybrid drug delivery platform involving the fusion of cell membranes from U937 monocytes and synthetic lipids to create nano-cell vesicle technology systems (nCVTs) is designed. nCVTs are engineered for a targeted approach towards tumour sites by preserving key surface proteins from U937 monocytes, while being amendable to functionalization and loading due to their liposomal components.
View Article and Find Full Text PDFCell-derived nanovesicles (CDNs) have been recently investigated as novel drug delivery systems (DDSs), due to the preservation of key features from the cell membrane of their precursor cells, which are responsible for an efficient cellular uptake by target cells. However, CDNs suffer from low drug loading efficiencies as well as challenges in functionalization compared to conventional DDS like liposomes. Here, we describe the first study proposing the fusion of CDNs with liposomes to form EXOPLEXs.
View Article and Find Full Text PDFCell Derived Nanovesicles (CDNs) have been developed from the rapidly expanding field of exosomes, representing a class of bioinspired Drug Delivery Systems (DDS). However, translation to clinical applications is limited by the low yield and multi-step approach in isolating naturally secreted exosomes. Here, we show the first demonstration of a simple and rapid production method of CDNs using spin cups via a cell shearing approach, which offers clear advantages in terms of yield and cost-effectiveness over both traditional exosomes isolation, and also existing CDNs fabrication techniques.
View Article and Find Full Text PDFIntradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity.
View Article and Find Full Text PDFCell-derived nanovesicles (CDNs) are an emerging class of biological drug delivery systems (DDS) that retain the characteristics of the cells they were derived from, without the need for further surface functionalization. CDNs are also biocompatible, being derived from natural sources and also take advantage of the enhanced permeability and retention effect due to their nanodimensions. Furthermore, CDNs derived from monocytes were shown to have an in vivo targeting effect, accumulating at the tumor site in a previous study conducted in a mouse tumor model.
View Article and Find Full Text PDFN(6)-Methyladenosine (m6A) is currently one of the most intensively studied post-transcriptional modifications in RNA. Due to its critical role in epigenetics and physiological links to several human diseases, it is also of tremendous biological and medical interest. The m6A mark is dynamically reversed by human demethylases FTO and ALKBH5, however the mechanism by which these enzymes selectively recognise their target transcripts remains unclear.
View Article and Find Full Text PDFWe describe a novel methylation-sensitive nucleic acid (RNA) probe which switches conformation according to its methylation status. When combined with a differential scanning fluorimetry technique, it enables highly sensitive and selective detection of demethylase activity at a single methylated-base level. The approach is highly versatile and may be adapted to a broad range of RNA demethylases.
View Article and Find Full Text PDFLidocaine as an analgesic is of particular interest in both acute and chronic pain conditions and is used via injections or transdermal patches. While injections are associated with problems such as patient incompliance, topical administration of lidocaine using patches is less efficient due to variability of drug absorption among individuals, slower drug permeation through the skin, and hence a resultant undesirable delay in analgesic effects. To address this clinical problem, we developed a microneedle integrated transdermal patch (MITP), using a photolithography based process, in which microneedles create micrometer-sized channels in the skin to deliver lidocaine rapidly, while the reservoir patch holding the bulk of the drug enables higher drug loading and carries on to release the drug for prolonged periods.
View Article and Find Full Text PDFMicroneedles are being fast recognized as a useful alternative to injections in delivering drugs, vaccines, and cosmetics transdermally. Owing to skin's inherent elastic properties, microneedles require an optimal geometry for skin penetration. In vitro studies, using rat skin to characterize microneedle penetration in vivo, require substrates with suitable mechanical properties to mimic human skin's subcutaneous tissues.
View Article and Find Full Text PDFInt J Nanomedicine
January 2013
Background: Recent interest in biocompatible polymeric microneedles for the delivery of biomolecules has propelled considerable interest in fabrication of microneedles. It is important that the fabrication process is feasible for drug encapsulation and compatible with the stability of the drug in question. Moreover, drug encapsulation may offer the advantage of higher drug loading compared with other technologies, such as drug coating.
View Article and Find Full Text PDF