New strategic chromophores with updated fine-tuning of previously reported BLD1 and BLD3 chromophores were designed. BLD1 and BLD3 have silicon functional groups on the donor unit, and the bridge has a good chance of self-assembling, so in the present study we fine-tuned the isolating groups to the bulky cyclic alkene to improve their dipole moment and organic electro-optic (OEO) properties as well. To demonstrate the impact of cyclic alkenes on the electron-donating groups in sensible NLO chromophore designs, a thorough analysis and comparison of the chromophore synthesis, UV-Vis calculations, solvatochromic behavior of the chromophore, DFT quantum mechanical calculations, thermal stabilities, and much lower dipole moments was conducted.
View Article and Find Full Text PDFElectro-optic modulator (EOM) is one of the key devices of high-speed optical fiber communication systems and ultra-wideband microwave photonic systems. Silicon-organic hybrid (SOH) integration platform combines the advantages of silicon photonics and organic materials, providing a high electro-optic effect and compact structure for photonic integrated devices. In this paper, we present an SOH-integrated EOM with comprehensive investigation of EOM structure design, silicon waveguide fabrication with Slot structure, on-chip poling of organic electro-optic material, and characterization of EO modulation response.
View Article and Find Full Text PDFA series of novel chromophores A, B, C, and D, based on the julolidinyl donor and the tricyanofuran (TCF) and CF-tricyanofuran (CF-Ph-TCF) acceptors, have been synthesized and systematically investigated. The -bis(trifluoromethyl)benzene derivative isolation group was introduced into the bridge in the chromophores C and D. These nonlinear optical chromophores showed good thermal stability, and their decomposition temperatures were all above 220 °C.
View Article and Find Full Text PDFIn this paper, two types of polymer-stabilized blue-phase liquid crystals (PS-BPLCs) with different monomers were designed and prepared. The morphology, temperature range and electro-optical properties of the blue phases were studied and discussed. The temperature range of both types of PS-BPLC is greater than 110 °C, and both samples can be stabilized well at room temperature.
View Article and Find Full Text PDFFTC dye with a D-π-A structure showed outstanding stability, high extinction coefficient, and good photothermal performance. Thus, nanoparticles based on FTC dye were first fabricated by a nanoprecipitation method for photothermal therapy (PTT) which was guided by photoacoustic imaging (PAI). The prepared FTC NPs showed a photothermal conversion efficiency of ∼52.
View Article and Find Full Text PDFPolymers are promising materials for fabricating photonic integrated waveguide devices. Versatile functional devices can be manufactured using a simple process, with low cost and potential mass-manufacturing. This paper reviews the recent progress of polymer photonic integrated devices fabricated using the UV imprinting technique.
View Article and Find Full Text PDFIn this work, we investigated the enhancement of the electro-optic response by introducing electron-rich heteroatoms as additional donors into the donor or bridge of a conventional second-order nonlinear optical chromophore. A series of chromophores C2-C4 based on the same tricyanofuran acceptor (TCF) but with different heteroatoms in the alkylamino phenyl donor (C2 or C3) or thiophene bridge (C4) have been synthesized and systematically investigated. Density functional theory calculations suggested that chromophores C2-C4 had a smaller energy gap and larger first-order hyperpolarizability (β) than traditional chromophore C1 due to the additional heteroatoms.
View Article and Find Full Text PDFA series of chromophores y1–y3 based on the same bis(N,N-diethyl)aniline donor and the tricyanofuran acceptor (TCF) linked together via the modified thiophene π-conjugation with different isolated groups have been synthesized and systematically investigated in this paper. Density functional theory (DFT) was used to calculate the HOMO–LUMO energy gaps and first-order hyperpolarizability (β) of these chromophores. Besides, to determine the redox properties of these chromophores, cyclic voltammetry (CV) experiments were performed.
View Article and Find Full Text PDFA new chromophore HK containing the cis,cis-1,7-diethoxy-3-isopropyljulolidine group as a novel electron-donor, thiophene as a π-conjugated bridge and a tricyanofuran (TCF) acceptor has been synthesized and systematically investigated in this paper. Its corresponding chromophore FTC using 4-(diethyl amino)benzyl as the electron donor group was also prepared for comparison. This is the first time that the cis,cis-1,7-diethoxy-3-isopropyljulolidine group was introduced into NLO materials.
View Article and Find Full Text PDFA new diene-conjugated chromophore WJ1 was synthesized with high yield of 36% through an H-bonding induced Vilsmeier reaction. By simple guest-host doping, a large electro-optic efficiency of 337 pm V(-1) at 1310 nm and excellent temporal stability at 75 °C have been achieved in poled films of WJ1/APC with a high loading density of 40 wt%.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
March 2010
Oleic acid (OA)-modified LaF3:Er,Yb nanoparticle-doped organic-inorganic hybrid material (OIHM) was prepared. The absorption spectrum and photoluminescence spectrum were analyzed. The full width at half maximum (FWHM) of the photoluminescence spectrum was about 83 nm.
View Article and Find Full Text PDFPhotochem Photobiol Sci
April 2008
Two homoleptic bis(phthalocyaninato) erbium(III) complexes Er[Pc(beta-OR/R)4]2 and two half-sandwich phthalocyaninato erbium(III) complexes (acac)Er[Pc(beta-OR/R)4] (OR = 1-n-pentyloxy and R = tert-butyl) have been investigated. Then we studied the near-infrared luminescence properties of the compounds. When the phthalocyanine ligands were excited, half-sandwich phthalocyaninato erbium(III) complexes showed strong near-infrared luminescence at 1540 nm while homoleptic bis(phthalocyaninato) erbium(III) complexes showed no signals.
View Article and Find Full Text PDFWater-soluble infrared-to-visible fluorescent LaF(3) nanocrystals doped with different lanthanide ions (Er(3+)/Yb(3+), Eu(3+), Nd(3+), Tb(3+)) have been synthesized in methanol without using any ligands. These nanocrystals are easily dispersed in water, producing a transparent colloidal solution. The colloids of the Er(3+)/Yb(3+), Eu(3+), Nd(3+), Tb(3+) doped nanocrystals exhibit strong luminescence in the visible and near-infrared spectral regions.
View Article and Find Full Text PDF