This paper developed XJCT-3D, a simulation software for cooling tower wet plume dispersion. By coupling it with the Open GIS component Dotspatial, we have achieved geospatial visual representation of the calculation results, which has solved the problems of low calculation efficiency and insufficient visual representation of the traditional CFD software in the calculation of cooling tower wet plume dispersion. In order to verify the validity of the XJCT-3D software simulation results, we have conducted tracer experimental data from the ChalkPoint power plant.
View Article and Find Full Text PDFLarge Scale Natural Draft Cooling Tower has become a hot topic in China because it is an important part of the nuclear power plant, and its environmental impacts include shading, solar energy loss, water deposition and salt deposition. In China, there is no built large-scale natural draft cooling tower of nuclear power plant. Therefore, model prediction becomes an effective way to solve this problem.
View Article and Find Full Text PDFThe isolation of cellulose has found considerable applications recently due to its attractive characteristics. Cellulose from of different size classifications (425 μm-599 μm and 600 μm-849 μm) was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analyses. The crystal plane of the preferred orientation was at (020) for the most prominent peaks.
View Article and Find Full Text PDFBiotechnol Appl Biochem
February 2022
Renal fibrosis results in the progressive renal dysfunction and leads to chronic kidney disease (CKD) and ultimately end-stage renal disease. Asiaticoside was reported to regulate synaptopodin, desmin, nephrin, and podocin levels in adriamycin-induced nephropathy of rats. In this study, we found out that asiaticoside inhibited renal fibrosis in vitro and in vivo.
View Article and Find Full Text PDFPurpose: To prepare an angiopep-conjugated dendrigraft poly-L-lysine (DGL)-based gene delivery system and evaluate the neuroprotective effects in the rotenone-induced chronic model of Parkinson's disease (PD).
Methods: Angiopep was applied as a ligand specifically binding to low-density lipoprotein receptor-related protein (LRP) which is overexpressed on blood-brain barrier (BBB), and conjugated to biodegradable DGL via hydrophilic polyethyleneglycol (PEG), yielding DGL-PEG-angiopep (DPA). In vitro characterization was carried out.
The combination of gene therapy and chemotherapy is a promising treatment strategy for brain gliomas. In this paper, we designed a co-delivery system (DGDPT/pORF-hTRAIL) loading chemotherapeutic drug doxorubicin and gene agent pORF-hTRAIL, and with functions of pH-trigger and cancer targeting. Peptide HAIYPRH (T7), a transferrin receptor-specific peptide, was chosen as the ligand to target the co-delivery system to the tumor cells expressing transferrin receptors.
View Article and Find Full Text PDFGene therapy offers a promising cure of brain glioma and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to induce cell apoptosis of glioma selectively without affecting the normal cells. In this study, the nanoscopic high-branching dendrimer, polyamidoamine (PAMAM), was selected as the principal vector. Angiopep-2, which can target to the low-density lipoprotein receptor-related protein-1 (LRP1) expressed on BCECs and glial cells, was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethyleneglycol (PEG) and then complexed with the DNA, designated as PAMAM-PEG-Angiopep/DNA nanoparticles (NPs).
View Article and Find Full Text PDFClinical diagnosis of cancers using magnetic resonance imaging (MRI) is highly dependent on contrast agents, especially for brain tumors which contain blood-brain barrier (BBB) at the early stage. However, currently mostly used low molecular weight contrast agents such as Gd-DTPA suffer from rapid renal clearance, non-specificity, and low contrast efficiency. The aim of this paper is to investigate the potential of a macromolecular MRI contrast agent based on dendrigraft poly-l-lysines (DGLs), using chlorotoxin (CTX) as a tumor-specific ligand.
View Article and Find Full Text PDFA tumor-targeting carrier, peptide HAIYPRH (T7)-conjugated polyethylene glycol-modified polyamidoamine dendrimer (PAMAM-PEG-T7) was explored to deliver magnetic resonance imaging (MRI) contrast agents targeting to the tumor cells specifically. Two different types of tumors, liver cancer and early brain glioma model (involved with the blood-brain barrier), were chosen to evaluate the imaging capacity of this contrast agent. PAMAM-PEG-T7 was synthesized, conjugated with diethylene triamine pentaacetic acid (DTPA) and further chelated gadolinium (Gd), yielding GdDTPA-PAMAM-PEG-T7.
View Article and Find Full Text PDFGene therapy offers great potential for brain glioma. However, therapeutic genes could not reach glioma spontaneously. A glioma-targeting gene delivery system is highly desired to transfer exogenous genes throughout the tumor focus.
View Article and Find Full Text PDFA combination cancer therapy was investigated via co-delivery of therapeutic gene encoding human tumor necrosis factor-related apoptosis-inducing ligand (pORF-hTRAIL) and doxorubicin (DOX) using a tumor-targeting carrier, peptide HAIYPRH (T7)-conjugated polyethylene glycol-modified polyamidoamine dendrimer (PAMAM-PEG-T7). T7, a transferrin receptor-specific peptide, was chosen as the ligand to target the co-delivery system to the tumor cells expressing transferrin receptors. The result of fluorescence scanning showed that about 375 DOX molecules were bound to one pORF-hTRAIL molecule.
View Article and Find Full Text PDFThe purpose of this work was to evaluate the potential of HAIYPRH (T7) peptide as a ligand for constructing tumor-targeting drug delivery systems. T7 could target to transferrin-receptor (TfR) through a cavity on the surface of TfR and then transport into cells via endocytosis with the help of transferrin (Tf). In this study, T7-conjugated poly(ethylene glycol) (PEG)-modified polyamidoamine dendrimer (PAMAM) (PAMAM-PEG-T7) was successfully synthesized and further loaded with doxorubicin (DOX), formulating PAMAM-PEG-T7/DOX nanoparticles (NPs).
View Article and Find Full Text PDFDendrimers have attracted great interest in the field of gene delivery due to their synthetic controllability and excellent gene transfection efficiency. In this work, dendrigraft poly-L-lysines (DGLs) were evaluated as a novel gene vector for the first time. Derivatives of DGLs (generation 2 and 3) with different extents of PEGylation were successfully synthesized and used to compact pDNA as complexes.
View Article and Find Full Text PDF